|
1. Baeriswyl, V. and Gerhard, C., The angiogenic switch in carcinogenesis. Semin Cancer Biol, 2009. 19(5): p. 329-37. 2. Bergers, G. and Laura, E. B., Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10. 3. Weis, S.M. and David, A. C., Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med, 2011. 17(11): p. 1359-70. 4. Matsumura, Y. and Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986. 46(12 Pt 1): p. 6387-92. 5. Maeda, H., Tomohiro, S. and Toshimitsu, K., Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release, 2001. 74(1-3): p. 47-61. 6. Maeda, H., Bharate, G.Y. andDaruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm, 2009. 71(3): p. 409-19. 7. Jennifer, S. F., Robert, D. G., and Robert, A. G., Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol, 2008. 18(5): p. 330-7. 8. Natarajan, R. and Robert, J. G., pH and drug resistance in tumors. Drug Resist Updat, 2000. 3(1): p. 39-47. 9. Takeshi, M., Low pH leads to sister-chromatid exchanges and chromosomal aberrations, and its clastogenicity is S-dependent. Mutat Res, 1995. 334(3): p. 301-8. 10. Pierre, S. Frédérique, V., Thies, S., Melanie, C. W., Julien, V., Zahid, N. R., Christophe, J. D., Kelly, M. K., Caroline, D., Bénédicte, F. J., Michael, J. K., Bernard, G., Miriam, L. W., Olivier, F., and Mark, W. D., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 2008. 118(12): p. 3930-42. 11. Kwangjae, C.,Xu, W.,Shuming, N., Zhuo (Georgia), C.,and Dong, M. S., Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 2008. 14(5): p. 1310-6. 12. Mark, E. D., Zhuo (Georgia), C. and Dong, M. S., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 2008. 7(9): p. 771-82. 13. Monica, L. A., Afsaneh, L., and Glen S. K., Amphiphilic block copolymers for drug delivery. J Pharm Sci, 2003. 92(7): p. 1343-55. 14. Kevin, L. and Helen, B., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm, 2007. 65(3): p. 259-69. 15. Torchilin, V.P., Micellar nanocarriers: pharmaceutical perspectives. Pharm Res, 2007. 24(1): p. 1-16. 16. Marie-Christine, J. and Jean-Christophe, L. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm, 1999. 48(2): p. 101-11. 17. Gaurav, S., Daria, Y. A., and Alexander, V. K., Endocytosis of nanomedicines. J Control Release, 2010. 145(3): p. 182-95. 18. Duncan, R. and Simon, C. W. R., Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm, 2012. 9(9): p. 2380-402. 19. Emily, G. and Yoon, Y., Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm, 2009. 6(4): p. 1041-51. 20. Yogeshkumar, M., Marilena, L., and Alexander, M. S., Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci, 2009. 30(11): p. 592-9. 21. You Han, B., Drug targeting and tumor heterogeneity. J Control Release, 2009. 133(1): p. 2-3. 22. Carl-Henrik, H., Kristofer, R. ,Kristian, P., Arne, Ö., High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer, 2004. 4(10): p. 806-13. 23. Danhier, F., Olivier, F., and Véronique, P., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release, 2010. 148(2): p. 135-46. 24. Hyuk Sang, Y. and Tae Gwan, P., Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release, 2004. 96(2): p. 273-83. 25. Yu-Cai, W., Xi-Qiu, L., Tian-Meng, S.,Meng-Hua, X., Jun W., Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J Control Release, 2008. 128(1): p. 32-40. 26. Joseph, A. M., Lysosomal acidification mechanisms. Annu Rev Physiol, 2012. 74: p. 69-86. 27. Weiwei, G., Juliana, M. C., and Omid, C. F., pH-Responsive nanoparticles for drug delivery. Mol Pharm, 2010. 7(6): p. 1913-20. 28. Shiladitya, S., David, E., Ishan, C., Ganlin, Z., Nicki, W., Tanyel, K. and Ram S., Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005. 436(7050): p. 568-72. 29. Rong, T. and Jianjun, C., Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles. J Am Chem Soc, 2009. 131(13): p. 4744-54. 30. Santosh, A., Che-Ming Jack, H., and Liangfang, Z, Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano, 2010. 4(1): p. 251-8. 31. Shashwat, S. B. and Dong-Hwang, C., Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology, 2008. 19(50): p. 505104. 32. David, B. R., David, L. L., Darren, H. W., So, C. W., Jason, J. K., Paula, L. R.,Stephanie, L. B., Tom, W. R., Qili, C., Andrei, V. B., James, E. H., and Jon, A. W. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A, 2007. 104(32): p. 12982-7. 33. Hélène, B., Andrew, D. W., and Arwyn, T. J., Tuning the pH sensitivities of orthoester based compounds for drug delivery applications by simple chemical modification. Bioorg Med Chem Lett, 2010. 20(7): p. 2200-3. 34. Jingxia, G.,Woei-Ping, C.,Jiguang, L.,Sum-Yee, L., David, S., Xiaozhong, Q., and Zhenzhong, Y., pH-triggered reversible "stealth" polycationic micelles. Biomacromolecules, 2008. 9(1): p. 255-62. 35. Ozana, O., Ramona, E., David, W. H., Wolfgang, M., Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci, 2009. 9(2): p. 129-39. 36. Emanuel, F., Mohiuddin, A. Q. and Rainer, H., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev, 2012. 64(9): p. 866-84. 37. Huiyun, W., Yongyong, L., Redox Sensitive Nanoparticles with Disulfide Bond Linked Sheddable Shell for Intracellular Drug Delivery. Medicinal chemistry, 2014. 4: p. 748-755. 38. Srinivas, G., Harikrishna, D., Aliasgar, S., Mansoor, A., A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release, 2008. 126(3): p. 187-204. 39. Graham, W. B. and Traber, M.G., Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr, 1990. 10: p. 357-82. 40. Constantina, C., Andreas, P., and Andreas, I. C., Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int J Cancer, 2008. 123(4): p. 739-52. 41. Neuzil, J., Weber, T., Gellert, N. and Weber, C., Vitamin E succinate and cancer treatment: a vitamin E prototype for selective antitumour activity. Br J Cancer, 2003. 89(10): p. 1822-6. 42. Birringer, M., EyTina, J.H., Salvatore, B.A. and Neuzil, J., Selective cancer cell killing by alpha-tocopheryl succinate. Br J Cancer, 2001. 84(1): p. 87-9. 43. Birringer, M., et al., Vitamin E analogues as inducers of apoptosis: structure-function relation. Br J Cancer, 2003. 88(12): p. 1948-55. 44. Xiu-Fang, W., Lanfeng, D., Yan, Z., Marco, T., Kun, W., Neuzil, J., Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J, 2001. 15(2): p. 403-15. 45. Birringer, M., EyTina, J.H., Salvatore, B.A. and Neuzil, J. Vitamin E analogues as anticancer agents: lessons from studies with alpha-tocopheryl succinate. Mol Nutr Food Res, 2006. 50(8): p. 675-85. 46. Leland, H. H. and Michael, B. K., Cell cycle control and cancer. Science, 1994. 266(5192): p. 1821-8. 47. Jing, N., Ming, C., Yu, Z.,Rongshan, L., Jiaoti, H. and Shuyuan, Y., Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochem Biophys Res Commun, 2003. 300(2): p. 357-63. 48. Jennifer, M. T., Francis, W. R., Seong-Jin, K., Tao, F., Victoria, G., and Maria, C. B., Vitamin E succinate inhibits proliferation of BT-20 human breast cancer cells: increased binding of cyclin A negatively regulates E2F transactivation activity. Cancer Res, 1997. 57(13): p. 2668-75. 49. Amal, A. A., Hebatallah, A. D.,Nevine, F., Amira, R., Samia, A.S., Promising antitumor effect of alpha-tocopheryl succinate in human colon and liver cancer cells. Med. Chem. Res., 2012. 21: p. 2735–2743. 50. Weiping, Y., Bob, G. S., and Kimberly, K., RRR-alpha-tocopheryl succinate induction of DNA synthesis arrest of human MDA-MB-435 cells involves TGF-beta-independent activation of p21Waf1/Cip1. Nutr Cancer, 2002. 43(2): p. 227-36. 51. Huihong, Y., Weiping. Y., Bob G. S. and Kimberly, K., RRR-alpha-tocopheryl succinate induces MDA-MB-435 and MCF-7 human breast cancer cells to undergo differentiation. Cell Growth Differ, 2001. 12(9): p. 471-80. 52. Lan-Feng, D., Victoria, J.A.J., David, T., Lubomir, P., Jakub, R., Karel, V.,Jaroslav, T., Renata, Z., Elahe, M., Katarina, K., Marina, S., Jan, S.,Ruth, F., Paul, K. W., Erik, N., Jacob, G., Brian, A. S., Jana, N.,Jaroslav, T., Miroslav, L., Pavel, H., Boris, Z., Mark, J. C., Stephen, J. R., Robin, A.J.S., Neuzil, J., Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med, 2011. 50(11): p. 1546-55. 53. Jennifer, M. T., Tao, F., Francis, W. R., Judy, A. M., Daniel, C. B. and Maria C. B., Vitamin E succinate induces Fas-mediated apoptosis in estrogen receptor-negative human breast cancer cells. Cancer Res, 1997. 57(5): p. 881-90. 54. Kun, W., Yao, L., Yan, Z., Yu-Juan, S., Wei, X., Wei-Ping, Y., Lan, Z., Roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells. World J Gastroenterol, 2002. 8(6): p. 982-6. 55. April, C., Susan, G., , Maria, S., Jennifer, T., Bihong, Z., Bob, G. S. and Kimberly, K., RRR-alpha-tocopheryl succinate inhibits proliferation and enhances secretion of transforming growth factor-beta (TGF-beta) by human breast cancer cells. Nutr Cancer, 1993. 19(3): p. 225-39. 56. Minsub, S., and Thomas, E. E., Vitamin E succinate induces NAG-1 expression in a p38 kinase-dependent mechanism. Mol Cancer Ther, 2008. 7(4): p. 961-71. 57. Xiu-Fang, W., Paul, K. W., Brian, A. S., Jiri, N., Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem Biophys Res Commun, 2005. 326(2): p. 282-9. 58. Marisela, O-M., Diego, R. He-E., Rolando, H-M.,alpha-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats. Free Radic Biol Med, 2013. 65: p. 1090-100. 59. Vladimir, G., Erik, N., Sten, O., and Boris, Z., Involvement of Ca2+ and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer, 2010. 127(8): p. 1823-32. 60. Weiping, Y., QiaoYin, L., Feras, M. H., Bob, G. S. and Kimberly, K., Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res, 2001. 61(17): p. 6569-76. 61. Zhao, Y., Wu, K., Yu, Y., Li, G., Roles of ERK1/2 MAPK in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells, 2003. 32(6): p. 573-5. 62. Rainer, S. and Rolf, M., Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr, 2006. 136(6): p. 1477-82. 63. Jiri, N., Emma, S., Xiu-Fang, W., Lan-Feng, D., Michael, S., alpha-Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signalling. FEBS Lett, 2007. 581(24): p. 4611-5. 64. Michael, S., Marco, T., Renata, A.,Nina, G.,Antonio, P.,and Jiri, N., alpha-Tocopheryl succinate inhibits proliferation of mesothelioma cells by selective down-regulation of fibroblast growth factor receptors. Biochem Biophys Res Commun, 2004. 318(3): p. 636-41. 65. Mokenge, P. M., Frida, D. F., LaKesha, S., and Audreen, L., Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate. Ann Surg Oncol, 2002. 9(10): p. 1023-32. 66. Min, Z., Saleh, A. and Shuyuan, Y., RRR-alpha-tocopheryl succinate inhibits human prostate cancer cell invasiveness. Oncogene, 2004. 23(17): p. 3080-8. 67. Yong-Heng, D., Yin-Han G. and Xin-Bin, G.,Anticancer mechanisms of vitamin E succinate, Chinese J of Cancer, 2009. 28(10): p. 1114-8. 68. Eva-Maria, C. Christiane, B. Michael, F. W., Reinhard, K.,Ju1rgen, H., John, A. H. Kevin, J. E, Ulrich, F. S. and Claus-Michael, L., Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm, 2007. 4(3): p. 465-74. 69. Hee-Jeong, Y., Eunmyong, L., Moon-Kyung, C., Young-Ju, L., Jun Ho, C., So-Hee, K., Chang-Hun, L., Soo-Jeong, L. Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol. J Control Release, 2005. 107(1): p. 43-52. 70. Yu, M., Jing, Z., Si-Shen, F., Targeted co-delivery of docetaxel, cisplatin and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release, 2013. 169(3): p. 185-92. 71. Yu, M., Jing, Z., Si-Shen, F., Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm, 2012. 438(1-2): p. 98-106. 72. Na, C., Si-Shen, F., Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials, 2008. 29(28): p. 3856-65. 73. Sadoqi, M., Lau-Cam, C.A., and Wu, S.H., Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry. J Colloid Interface Sci, 2009. 333(2): p. 585-9. 74. Haizheng, Z. and Lin Yue Lanry, Y., Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. J Biomed Mater Res A, 2009. 91(2): p. 505-18. 75. Si-Shen, F., Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev Med Devices, 2004. 1(1): p. 115-25. 76. Si-Shen, F., New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine, 2006. 1(3): p. 297-309. 77. Mu, L. and Si-Shen, F., Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release, 2002. 80(1-3): p. 129-44. 78. Gang, R., Si-Shen, F., and Qiu-Tian, L., Effects of material hydrophobicity on physical properties of polymeric microspheres formed by double emulsion process. J Control Release, 2002. 84(3): p. 151-60. 79. Khin Yin, W. and Si-Shen, F., Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005. 26(15): p. 2713-22. 80. Xuguang, Z., Xiangwen, P., Weiping, Y., Shaoying, H., Yan, Z., Zhihong, Z.,Xiaoli, H., Kun, W., Alpha-tocopheryl succinate enhances doxorubicin-induced apoptosis in human gastric cancer cells via promotion of doxorubicin influx and suppression of doxorubicin efflux. Cancer Lett, 2011. 307(2): p. 174-81. 81. Yilwoong, Y., Jae Hong, K., Hye-Won, K., Hun Seung, O., Sung Wan, K. and Min Hyo, S., A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution. Pharm Res, 2005. 22(2): p. 200-8. 82. Sang Myoung, N., Su Eun, H., Gayong, S., Kyoung Eun, L., Chan-Wha, K., Sung Sik, H.,Yongseok, C., Young Keun, K., Won-Ki, K., Yu-Kyoung, O., Tocopheryl oligochitosan-based self assembling oligomersomes for siRNA delivery. Biomaterials, 2011. 32(3): p. 849-57. 83. Youhua, T., Jianfeng, H., Xiaowen, W. Huanyu, D., Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Colloids Surf B Biointerfaces, 2013. 102: p. 604-10. 84. Chun-Liang, L., Sheng-Jie, L., Hsieh-Chih, T., Wei-Hsiang, C.,Cheng-Hung, T., Chien-Hsin, D. C., Ging-Ho, H., Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials, 2009. 30(23-24): p. 3961-70. 85. Eun Seong, L., Kun, N. and You Han, B., Super pH-sensitive multifunctional polymeric micelle. Nano Lett, 2005. 5(2): p. 325-9. 86. Qi, Z., Xing, G., Tao, C., Zhao, Z., Shijun, S.,Chao, L., Jinrong, L., and Shaobing, Z., Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. J Phys Chem B, 2011. 115(43): p. 12662-70. 87. Rui, W., Xiuli, H., Sai, W., Haihua, X., Haidong, C., Zhigang, X., Yubin, H. and Xiabin, J., Biological characterization of folate-decorated biodegradable polymer-platinum(II) complex micelles. Mol Pharm, 2012. 9(11): p. 3200-8. 88. Tianbo, L., Vaughn, M. N.and Benjamin, C., Self-Assembly of Mixed Amphiphilic Triblock Copolymers in Aqueous Solution. Langmuir, 1999. 15: p. 3109-3117 89. Chun-Liang, L., Ko-Min, L., Chun-Kai, H. and Ging-Ho, H., Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery. Adv. Funct. Mater., 2006. 16 p. 2309 -2316. 90. Kiran, R. C., Mukesh, U., Arehalli, S. M., Abhinesh, K., Piyush, K. M., Anil, K. M., Rashi, M., Jukka, M., Rayasa, S. R. M., Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res, 2012. 29(1): p. 53-68. 91. Shawn, C. O., Dianna, P.Y.C., Molly, S. S., Polymeric micelle stability. Nano Today, 2012. 7.p.53-65. 92. Priya, P. K., Dmitri, S., Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv, 2011. 8(3): p. 343-57. 93. Gessner, A., Waicz, R. Lieske, A. Paulke, B.-R. Ma¨der, K., Mu¨ller, R.H. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm, 2000. 196(2): p. 245-9. 94. Genevie`ve, G., Marie-He´le`ne, D., Vinayak, P. S., Ning, K.,Dusica, M., Jean-Christophe, L., Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release, 2005. 109(1-3): p. 169-88. 95. Chung, J.E., Yokoyama, M., Aoyagi, T., Sakurai, Y., Okano, T., Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release, 1998. 53(1-3): p. 119-30. 96. Lisa, M. B., Peter, W. S., Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev, 2007. 59(8): p. 748-58. 97. Yi, W. and Wilson, S. M., Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. J Pharm Innov, 2014. 9(2): p. 158-173. 98. Anthony, B., Yi, W., Yang, Z., Brooke, M. H., T. Kevin, Hi.,Wilson, S. M., Amy, K. W. and Jelena, M. J., A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology, 2013. 2(2): p. e23034.1-11 99. Moghimia, S.M., Muira, I.S., Ilium, L., Davisa, S.S. andKolb-Bachofenb, V., Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta, 1993. 1179(2): p. 157-65. 100. Frank, A., Eric, P., Linda, K. M. and Omid, C. F., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505-15. 101. Chunbai, H., Yiping, H., Lichen, Y., Cui, T., Chunhua, Y., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31(13): p. 3657-66. 102. Pei-Lin, L., Yi-Chun, C., Ta-Wei, O., Hung-Hao, C., Hsieh-Chih, T., Chih-Jen, W., Chun-Liang, L., Shiaw-Pyng, W., Kun-Ju, L., Tzu-Chen, Ye., Ging-Ho, H., Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials, 2011. 32(8): p. 2213-21. 103. Andreas, F., Felicitas, H., Andrea, K., Rolf, S., Regine, P., Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta, 2006. 1758(10): p. 1633-40. 104. Damon, S., Shihu, W., Norased, N., Jinming, G. and Elena, E. D., Doxorubicin and beta-lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med (Maywood), 2007. 232(8): p. 1090-9. 105. Rainer, H., Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed Engl, 2004. 43(3): p. 278-82. 106. Yi-Chun, C., Li-Chi, L., Pei-Lin, L., Chun-Liang, L., Hsieh-Chih, T., Chiung-Yin, H.,Kuo-Chen, W., Tzu-Chen, Y., Ging-Ho, H., The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials, 2012. 33(18): p. 4576-88. 107. Mateja, C., Julijana, K. and Janko, K., Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opin Biol Ther, 2005. 5(12): p. 1557-69. 108. Todd, W., Kenneth, W. K. and Bert, V., p21 Is Necessary for the p53-mediated G1 Arrest in Human Cancer Cells. Cancer Res, 1995. 55: p. 5187-5190. 109. Wafik, S. E., J. Wade, H., Patrick, M. O'., Victor, E. V., Christine, E. C.,Joany, J., Jennifer, A. P., Marilee, B., David, E. H., Yisong, W., Klas, G. W.,W. Edward, M., Michael, B. K., Kurt, W. K., Stephen, J. E., Kenneth, W. K. and Bert, V., WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 1994. 54(5): p. 1169-74. 110. Nazim Ghouri, David Preiss, and Naveed Sattar, RRR-alpha-tocopheryl succinate inhibits the proliferation of human prostatic tumor cells with defective cell cycle/differentiation pathways. Nutr Cancer, 1995. 24(2): p. 161-9. 111. Renata, A., Maria Serena, B., Laura, P., Marco, T.,Nina, G., Battista, B., Jiri, N., Piero, P., Alpha-tocopheryl succinate alters cell cycle distribution sensitising human osteosarcoma cells to methotrexate-induced apoptosis. Cancer Lett, 2006. 232(2): p. 226-35. 112. Quimby, F.W. and Luong, R.H., Clinical chemistry of the laboratory mouse. The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models. Volume III, 2007: p. 171-216. 113. Chong-Shan, W., Ting-Tsung, C., Wei-Jen, Y.,Shan-Tair, W., Pesus, C., Impact of increasing alanine aminotransferase levels within normal range on incident diabetes. J Formos Med Assoc, 2012. 111(4): p. 201-8. 114. Nazim, G., David, P., and Naveed, S. cell cycle distribution sensitising, Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease: a narrative review and clinical perspective of prospective data. Hepatology, 2010. 52(3): p. 1156-61. 115. Xinglu, H., Xu, T.,Dong, C.,Fangqiong, T., Junqi, H., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010. 31(3): p. 438-48. 116. Julie, A. C. and Samir, M.,Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A, 2006. 103(13): p. 4930-4. 117. Jennifer, E. G.,Marimar, D. L., Jonathan, S. D., Richard, W. S., Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials, 2011. 32(29): p. 7241-52. 118. Decuzzi, P., Godin, B., Tanak, T. Lee, S.-Y., Chiappini, C. Liu, X., Ferrari, M., Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release, 2010. 141(3): p. 320-7. 119. Hanene, A-B,. Khuloud, T. A-J. David, M., Maurizio, P., Alberto, B. and Kostas, K.,Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun (Camb), 2008.4: p. 459-61. 120. Nataliya, N. M. and Nicholas, A. K., Albumin-CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. Nano Lett, 2001. 1:p281-6. 121. Ashlynn, L.Z. L., Yong, W., Wen-Hui, Y., Ho Sup, Y., Sui Yung, C., Yi-Yan, Y., Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles. Biomaterials, 2008. 29(9): p. 1224-32. 122. Shaopeng, W., Natalia, M., Nicholas, A. K., Wei, C. and Joe, S., Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Lett, 2002. 2: p. 817-822. 123. Donald, E. O., Nicholas, A. P., Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm, 2006. 307(1): p. 93-102. 124. Susumu, N., Ken-ichi, O., Keiko, M., Yoshiko, F.,Yoshinobu, T., Mitsuru, H., Kazutaka, H., Toshikiro, K., Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm, 2007. 329(1-2): p. 192-8. 125. Ken-ichi, O., Kentaro, F., Susumu, N., Keiko, M., Kazutaka, H., Toshiya, K., Toshikiro, K., Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Control Release, 2004. 100(3): p. 451-5. 126. Carl, D. W., Jonathan, B. O., Hongbo, G., Andrew, E. and Warren, C. W. C., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc, 2012. 134(4): p. 2139-47. 127. Timothy, A. L., Pratixa, P. J. and Konstantin, S., Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano, 2012. 6(10): p. 9182-90. 128. Liping, T. and John,W. E., Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med, 1993. 178(6): p. 2147-56. 129. B. Devika, C., Arezou, A. G. and Warren, C. W.C., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 2006. 6(4): p. 662-8. 130. Manfred, O., Peter, S., Sebastian, C., Sylvia, B. and Ernst, W., DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci, 2001. 3(3): p. E21. 131. B. Devika, C. and Warren, C. W., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett, 2007. 7(6): p. 1542-50. 132. William, G. N. and Michael, B. K. DNA Strand Breaks: the DNA Template Alterations That Trigger p53-Dependent DNA Damage Response Pathways. Mol. Cell. Biol., 1994. 14. p. 1815-1823. 133. Mikhail, V. B., Robert, R., Susan, Ba. and Tito, F., Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest, 2000. 105(4): p. 533-9.
|