(3.236.82.241) 您好!臺灣時間:2021/04/13 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉怡君
研究生(外文):Yi-Chun Liu
論文名稱:利用腦磁圖探討長期音樂訓練之大腦情緒神經網路可塑性
論文名稱(外文):Neural plasticity in processing of emotional prosody after long-term musical training revealed by magnetoencephalography
指導教授:陳麗芬陳麗芬引用關係謝仁俊謝仁俊引用關係
指導教授(外文):Li-Fen ChenJen-Chuen Hsieh
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:情緒性音調聽覺處理音樂家腦磁圖儀
外文關鍵詞:Emotional prosodyAuditory processingMusicianMagnetoencephalography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:音樂家接受長時間的複雜學習,包括學習如何提升外顯的藝術技巧及內在的藝術涵養,而情緒是藝術表達非常重要的成分,聲音訊息中的情緒性音調(emotional prosody)含有非語意表達情感的成分。過去研究發現,受過專業訓練之音樂家其大腦神經功能活化區域及整體連結性有別於未受過專業音樂訓練之人。例如在偵測處理情緒性音調的聽覺敏感度較一般人高,且能更精準辨認情緒性音調的情緒種類。本研究利用情緒性語音透過腦磁圖探討早期聽覺反應中,長期音樂訓練對聲音處理以及情緒感知功能的影響。
方法及步驟:本研究招募受過正規長期音樂訓練之音樂家 (鋼琴組及弦樂組)及未受藝術訓練的受試者共 114 位受試者,並收集與基本情緒、人格認知能力有關之心理評估量表結果。利用腦磁圖儀(MEG) 蒐集不同情緒語音刺激(中性、快樂、哀傷和生氣)誘發之腦磁訊號,受試者需專注觀看影片並忽略所聽見的聲音。利用訊號源定位方法分別計算左右半腦聽覺皮質區神經活化等效電流偶極(equivalent current dipole, ECD)大小及時間,並利用最大對比光束構成法(maximum contrast beamformer)推算大腦皮質神經活化程度之分布圖,以獨立樣本 t 檢定探討長期音樂訓練對聲音與情緒處理的神經活化差異,並將其結果與行為量表進行相關性分析。
結果:本研究發現音樂家的聽覺區相較於非音樂家對於情緒性語音在早期聽覺處理(約 50 毫秒)有較短的反應時間。進一步全腦分析顯示,音樂家大腦對快樂音調活化反應增加出現在右側前額葉皮質和左側海馬迴,對傷心或生氣的音調活化反應增加差異出現在左側顳葉區、緣上迴、右背外側前額葉皮層和左內側前額葉皮質,活化反應減少出現在左側中央皮質區。另外,音樂家之左側顳葉、前額葉皮質和海馬迴活化皆分別和每日練習時間呈現正相關結果,右背外側前額葉皮質活化與同理心量表分數呈現負相關結果。
結論:本研究結果呈現長期音樂訓練對於大腦自動化處理情緒性音調的神經可塑性。音樂家之聽覺皮質反應時間較短顯示長期音樂訓練能夠增強在早期聽覺感知階段(約 50 毫秒)對周圍聲音的偵測和處理效率。在聲音出現後約 100 毫秒時,音樂家對於不同情緒聲音有更進一步的處理,包含海馬迴與緣上迴活化增強,可能是和音樂訓練後對於偵測人聲的情緒性音調更具效率。背外側前額葉皮質活化和同理心量表分數的負相關結果則說明音樂家能抑制主觀的自身情緒去處理較需先被注意的情緒(例如生氣),而能客觀的以同理心了解他人情緒,這些結果顯示出長期音樂訓練能增強對於他人情緒狀態的同理能力。本篇研究能幫助我們了解長期音樂訓練影響大腦在聲音處理與情緒感知功能上的可塑性,以提供藝術教育之神經教育學基礎。
Introduction: Long-term musical training not only can enhance the skills of art but also can consolidate cognitive and emotional experiences into an aesthetic experience. Emotion is a very important component of artistic expression. The emotional prosody is the non-verbal vocal expression of emotion to convey a speaker’s emotional information to the listener. The M50 (50 ms after auditory stimulus onset) and M100 (100 ms after auditory stimulus onset) are the auditory components for the function of auditory input change detector and perceptual processing, respectively. Previous studies
demonstrated that musicians detect and recognize emotional prosody sensitively and precisely. The present study investigates the pre-attentive processes of emotional prosody in early auditory perceptual stage after long-term musical training using magne-toencephalography (MEG).
Methods: One hundred and fourteen subjects (pianists, string players, and non-artist controls) were recruited. The event-related magnetoencephalographic (MEG) data were
recorded when subjects listened to emotional prosody (neutral, sad, happy, and angry). Participants were instructed to ignore the auditory stimulation while watching a silent movie. The dipole fitting method was used to localize two equivalent current dipoles
(ECDs) at the bilateral auditory cortices of each individual and a beamformer-based source imaging technique was used to estimate spatiotemporal neuronal activities. A two sample t-test was performed to compare source amplitude and latency at M50 and M100 components for each dipole source, as well as for comparison of distributed source images between groups. Correlation analysis was also conducted between brain activity and behavioral data.
Results: We found that pianists and string players had shorter latency (M50 and M100) in response to neutral, sad and angry prosody at the bilateral auditory cortices. No significant difference between musicians and non-musicians was found for source amplitude. Musicians had higher activity in the frontal regions and (para) hippocampus during listening to happy prosody and enhanced activity in the temporal and parietal regions during listening to sad prosody. The results showed the positive correlation between the amount of practice time per day and activities at several brain areas, such as
temporal, frontal cortex, (para) hippocampus, and lingual gyrus in musicians. The brain activity of the dorsolateral prefrontal cortex was negatively correlated with the empathy quotient (EQ) scores in musicians.
iv

Abstract
Introduction: Long-term musical training not only can enhance the skills of art but
also can consolidate cognitive and emotional experiences into an aesthetic experience.
Emotion is a very important component of artistic expression. The emotional prosody
is the non-verbal vocal expression of emotion to convey a speaker’s emotional infor-
mation to the listener. The M50 (50 ms after auditory stimulus onset) and M100 (100
ms after auditory stimulus onset) are the auditory components for the function of audi-
tory input change detector and perceptual processing, respectively. Previous studies
demonstrated that musicians detect and recognize emotional prosody sensitively and
precisely. The present study investigates the pre-attentive processes of emotional pros-
ody in early auditory perceptual stage after long-term musical training using magne-
toencephalography (MEG).
Methods: One hundred and fourteen subjects (pianists, string players, and non-artist
controls) were recruited. The event-related magnetoencephalographic (MEG) data were
recorded when subjects listened to emotional prosody (neutral, sad, happy, and angry).
Participants were instructed to ignore the auditory stimulation while watching a silent
movie. The dipole fitting method was used to localize two equivalent current dipoles
(ECDs) at the bilateral auditory cortices of each individual and a beamformer-based
source imaging technique was used to estimate spatiotemporal neuronal activities. A
two sample t-test was performed to compare source amplitude and latency at M50 and
M100 components for each dipole source, as well as for comparison of distributed
source images between groups. Correlation analysis was also conducted between brain
activity and behavioral data.
Results: We found that pianists and string players had shorter latency (M50 and M100)
in response to neutral, sad and angry prosody at the bilateral auditory cortices. No
significant difference between musicians and non-musicians was found for source am-
plitude. Musicians had higher activity in the frontal regions and (para) hippocampus
during listening to happy prosody and enhanced activity in the temporal and parietal
regions during listening to sad prosody. The results showed the positive correlation be-
tween the amount of practice time per day and activities at several brain areas, such as
temporal, frontal cortex, (para) hippocampus, and lingual gyrus in musicians. The brain
activity of the dorsolateral prefrontal cortex was negatively correlated with the empathy
quotient (EQ) scores in musicians.
Conclusions: Our study demonstrated the neural responses to emotional prosody after long-term musical training. The shorter latency implicated that musicians achieved higher efficiency and effectiveness auditory processing to detect the prosody automatically. The heightened activity at the frontal and temporal cortices revealed that musicians may discriminate the happy prosody related to reward system and be more sensi-
tive to detect sad prosody pre-attentively. The finding of the lower activity at the dorsolateral prefrontal cortex with higher empathic ability in musicians implicates that the musicians may inhibit their own emotional state to process the external auditory stimuli
with socially urgent emotion. Our results demonstrate that the perception of other people's emotional state may be improved by musical training in early auditory response. The present study suggests the long-term musical training impacted the neuroplasticity of emotional perception and processing.
致謝 ................................................................................................................................. i
中文摘要 ......................................................................................................................... ii
Abstract ......................................................................................................................... iii
目錄........................................................v
List of Figures ............................................................................................................... vii
List of Tables ............................................................................................................... viii
Chapter 1 Introduction ................................................................................................... 1
1.1 Long-term musical training shapes the human brain ............................................ 2
1.2 Neuroplasticity of auditory processing in musicians .............................................. 4
1.3 Neuroplasticity of emotional processing in musicians ............................................ 6
1.3.1 The relationship between emotion perception in music and musicians ............ 6
1.3.2 Emotion expression in music performance ...................................................... 7
1.3.3 Emotional prosody .......................................................................................... 8
1.3.4 Musician’s brain and emotional prosody ......................................................... 8
1.3.5 Empathy is associated with musical abilities ................................................. 10
1.4 Auditory evoked components............................................................................... 11
1.4.1 Association with automatic perception of auditory stimuli ................................ 11
1.4.2 Association with auditory processing in musicians ............................................ 12
1.5 Aim and Hypotheses ............................................................................................ 12
Chapter 2 Materials and Methods ................................................................................ 14
2.1 Participants ......................................................................................................... 15
2.2 Behavior and psychological assessment ............................................................... 15
2.3 Stimuli and procedure ......................................................................................... 15
2.4 MEG and MRI data acquisition .......................................................................... 18
2.5 Data analysis ....................................................................................................... 18
2.5.1 MEG signal processing .................................................................................. 18
2.5.2 Dipole source model ...................................................................................... 19
2.5.2.1 Time component selection........................................................................... 19
2.5.3 Distributed source model .............................................................................. 20
Chapter 3 Results ......................................................................................................... 22
3.1 Demographic assessments and behavioral data ................................................... 23
3.2 Image results ....................................................................................................... 23
3.2.1 Main effect of ECD ........................................................................................... 23
3.2.2 Between-group comparison results of M50 component for ECD and MCB ...... 25
3.2.3 Between-group comparison results of M100 component for ECD and MCB ..... 29
Chapter 4 Discussion .................................................................................................... 38
4.1 The auditory processing of training-induced plasticity in musicians .................... 39
4.2 Enhanced detection and evaluation of emotional prosody after long-term musical
training ..................................................................................................................... 41
4.3 Facilitation of human emotional vocalizations in early auditory processing after
long-term musical training. ....................................................................................... 44
4.4 General discussion ............................................................................................... 47
Chapter 5 Conclusion ................................................................................................... 49
References .................................................................................................................... 51

List of Figures
Figure 1. A schematic representation of moderating variables of music-
induced neuroplasticity and their interactions. ................................ 2
Figure 2. A schema depicting the transfer skills are enhanced by musical
instrumental training. ...................................................................... 3
Figure 3. The paradigm of MEG experiment. Listening to auditory stimuli
while paying attention to watching a silent video. ........................... 17
Figure 4. Time component selection (M50 and M100) of dipole fitting method
........................................................................................................ 19
Figure 5. A main effect in M50 and M100 latencies. ....................................... 24
Figure 6. A main effect of emotion in source amplitude. ................................. 25
Figure 7. Group difference between pianists, string players and non-
musicians......................................................................................... 26
Figure 8. Brain regions with increased activity of M50 component in
musicians compared to non-musicians. ........................................... 27
Figure 9. Brain regions with decreased activity of M50 component in
musicians compared to non-musicians. ........................................... 27
Figure 10. Scatter plot of correlation between brain activation at STG and
mPFC and practice time in sad prosody. ........................................ 28
Figure 11. Group difference between pianists, string players and non-
musicians......................................................................................... 30
Figure 12. Brain regions with increased activity of M100 component in
musicians compared to non-musicians. ........................................... 31
Figure 13. Brain regions with decreased activity of M100 component in
musicians compared to non-musicians. ........................................... 31
Figure 14. Scatter plot of correlation between brain activation at
parahippocampus/LG and practice time in happy prosody. ........... 31
Figure 15. Scatter plot of correlation between brain activation at dlPFC and
scores of empathy quotient in angry prosody. ................................. 33


List of Tables
Table 1. Stimuli of emotional prosody with optimum design ............................. 16
Table 2. Demographic characteristics of the musicians and non-musicians. Data
are expressed as mean ± standard deviation. *p < 0.05. BAI: Beck’s
anxiety inventory; BDI: Beck’s depression inventory. ......................... 23
Table 3. Results of increased brain activity for M50 and M100 component in
musicians compared to non-musicians ................................................ 34
Table 4. Results of decreased brain activity for M50 and M100 component in
musicians compared to non-musicians ................................................ 35
Table 5. Brain-Behavior correlation of M50 components in musicians.............. 36
Table 6. Brain-Behavior correlation of M100 components in musicians ............ 37
References
Angulo-Perkins, A., W. Aubé, I. Peretz, F. A. Barrios, J. L. Armony and L. Concha
(2014). "Music listening engages specific cortical regions within the temporal
lobes: Differences between musicians and non-musicians." Cortex 59: 126-137.
Aziz-Zadeh, L., T. Sheng and A. Gheytanchi (2010). "Common premotor regions for
the perception and production of prosody and correlations with empathy and
prosodic ability." PLoS One 5(1): e8759.
Babiloni, C., P. Buffo, F. Vecchio, N. Marzano, C. Del Percio, D. Spada, S. Rossi, I. Bruni,
P. M. Rossini and D. Perani (2012). "Brains “in concert”: frontal oscillatory alpha
rhythms and empathy in professional musicians." Neuroimage 60(1): 105-116.
Bangert, M., T. Peschel, G. Schlaug, M. Rotte, D. Drescher, H. Hinrichs, H. J. Heinze
and E. Altenmuller (2006). "Shared networks for auditory and motor processing in
professional pianists: evidence from fMRI conjunction." Neuroimage 30(3): 917-
926.
Bangert, M. and G. Schlaug (2006). "Specialization of the specialized in features of
external human brain morphology." Eur J Neurosci 24(6): 1832-1834.
Baron-Cohen, S. and S. Wheelwright (2004). "The empathy quotient: an investigation
of adults with Asperger syndrome or high functioning autism, and normal sex
differences." Journal of autism and developmental disorders 34(2): 163-175.
Baumann, S., M. Meyer and L. Jancke (2008). "Enhancement of auditory-evoked
potentials in musicians reflects an influence of expertise but not selective
attention." J Cogn Neurosci 20(12): 2238-2249.
Behroozmand, R., N. Ibrahim, O. Korzyukov, D. A. Robin and C. R. Larson (2014). "Left-
hemisphere activation is associated with enhanced vocal pitch error detection in
musicians with absolute pitch." Brain Cogn 84(1): 97-108.
Bengtsson, S. L., Z. Nagy, S. Skare, L. Forsman, H. Forssberg and F. Ullen (2005).
"Extensive piano practicing has regionally specific effects on white matter
development." Nat Neurosci 8(9): 1148-1150.
Besson, M., J. Chobert and C. Marie (2011). "Transfer of training between music and
speech: common processing, attention, and memory." Frontiers: Research topics.
The relationship between music and language. Frontiers Media SA: 147-158.
Besson, M., D. Schön, S. Moreno, A. Santos and C. Magne (2007). "Influence of
musical expertise and musical training on pitch processing in music and."
Restorative neurology and neuroscience 25: 399-410.
Bhatara, A., A. K. Tirovolas, L. M. Duan, B. Levy and D. J. Levitin (2011). "Perception of
emotional expression in musical performance." Journal of Experimental
Psychology: Human Perception and Performance 37(3): 921.
Boutros, N. N., K. Gjini, S. B. Eickhoff, H. Urbach and M. E. Pflieger (2013). "Mapping repetition suppression of the P50 evoked response to the human cerebral cortex."
Clin Neurophysiol 124(4): 675-685.
Brattico, E., K. J. Pallesen, O. Varyagina, C. Bailey, I. Anourova, M. Jarvenpaa, T. Eerola
and M. Tervaniemi (2009). "Neural discrimination of nonprototypical chords in
music experts and laymen: an MEG study." J Cogn Neurosci 21(11): 2230-2244.
Brown, S. (2000). The “musilanguage” model of music evolution, na.
Callan, D. E., V. Tsytsarev, T. Hanakawa, A. M. Callan, M. Katsuhara, H. Fukuyama and
R. Turner (2006). "Song and speech: brain regions involved with perception and
covert production." Neuroimage 31(3): 1327-1342.
Chait, M., J. Z. Simon and D. Poeppel (2004). "Auditory M50 and M100 responses to
broadband noise: functional implications." Neuroreport 15(16): 2455-2458.
Chakrabarti, B., E. Bullmore and S. Baron-Cohen (2006). "Empathizing with basic
emotions: common and discrete neural substrates." Soc Neurosci 1(3-4): 364-384.
Chatani, H., K. Hagiwara, N. Hironaga, K. Ogata, H. Shigeto, T. Morioka, A. Sakata, K.
Hashiguchi, N. Murakami and T. Uehara (2016). "Neuromagnetic evidence for
hippocampal modulation of auditory processing." NeuroImage 124: 256-266.
Chen, Y. S., C. Y. Cheng, J. C. Hsieh and L. F. Chen (2006). "Maximum contrast
beamformer for electromagnetic mapping of brain activity." IEEE Trans Biomed
Eng 53(9): 1765-1774.
Cheng, C.-H., S. Baillet, F.-J. Hsiao and Y.-Y. Lin (2015). "Effects of aging on the
neuromagnetic mismatch detection to speech sounds." Biological psychology 104:
48-55.
Cheng, C.-H., S. Baillet and Y.-Y. Lin (2015). "Region-specific reduction of auditory
sensory gating in older adults." Brain and cognition 101: 64-72.
Chobert, J., C. Marie, C. François, D. Schön and M. Besson (2011). "Enhanced passive
and active processing of syllables in musician children." Journal of Cognitive
Neuroscience 23(12): 3874-3887.
Compton, R. J. (2003). "The interface between emotion and attention: A review of
evidence from psychology and neuroscience." Behavioral and cognitive
neuroscience reviews 2(2): 115-129.
Doeller, C. F., B. Opitz, A. Mecklinger, C. Krick, W. Reith and E. Schröger (2003).
"Prefrontal cortex involvement in preattentive auditory deviance detection::
neuroimaging and electrophysiological evidence." Neuroimage 20(2): 1270-1282.
Draganova, R., A. Wollbrink, M. Schulz, H. Okamoto and C. Pantev (2009).
"Modulation of auditory evoked responses to spectral and temporal changes by
behavioral discrimination training." BMC neuroscience 10(1): 1.
Egermann, H. and S. McAdams (2013). "Empathy and emotional contagion as a link
between recognized and felt emotions in music listening." Music Perception: An Interdisciplinary Journal 31(2): 139-156.
Elliott, C. A. (1974). "Effect of vocalization on the sense of pitch of beginning band
class students." Journal of Research in Music Education 22(2): 120-128.
Ethofer, T., S. Anders, M. Erb, C. Herbert, S. Wiethoff, J. Kissler, W. Grodd and D.
Wildgruber (2006). "Cerebral pathways in processing of affective prosody: a
dynamic causal modeling study." Neuroimage 30(2): 580-587.
Ethofer, T., S. Anders, S. Wiethoff, M. Erb, C. Herbert, R. Saur, W. Grodd and D.
Wildgruber (2006). "Effects of prosodic emotional intensity on activation of
associative auditory cortex." Neuroreport 17(3): 249-253.
Ethofer, T., J. Bretscher, M. Gschwind, B. Kreifelts, D. Wildgruber and P. Vuilleumier
(2012). "Emotional voice areas: anatomic location, functional properties, and
structural connections revealed by combined fMRI/DTI." Cereb Cortex 22(1): 191-
200.
Ethofer, T., B. Kreifelts, S. Wiethoff, J. Wolf, W. Grodd, P. Vuilleumier and D.
Wildgruber (2009). "Differential influences of emotion, task, and novelty on brain
regions underlying the processing of speech melody." J Cogn Neurosci 21(7): 1255-
1268.
Ethofer, T., D. Van De Ville, K. Scherer and P. Vuilleumier (2009). "Decoding of
emotional information in voice-sensitive cortices." Curr Biol 19(12): 1028-1033.
Franklin, M. S., K. S. Moore, C.-Y. Yip, J. Jonides, K. Rattray and J. Moher (2008). "The
effects of musical training on verbal memory." Psychology of Music.
Frith, U. and C. D. Frith (2003). "Development and neurophysiology of mentalizing."
Philosophical Transactions of the Royal Society of London B: Biological Sciences
358(1431): 459-473.
Fruhholz, S., L. Ceravolo and D. Grandjean (2012). "Specific brain networks during
explicit and implicit decoding of emotional prosody." Cereb Cortex 22(5): 1107-
1117.
Gaab, N. and G. Schlaug (2003). "The effect of musicianship on pitch memory in
performance matched groups." Neuroreport 14(18): 2291-2295.
Gadea, M., R. Espert, A. Salvador and L. Martí-Bonmatí (2011). "The sad, the angry,
and the asymmetrical brain: Dichotic Listening studies of negative affect and
depression." Brain and cognition 76(2): 294-299.
Gagnon, L. and I. Peretz (2003). "Mode and tempo relative contributions to “happy-
sad” judgements in equitone melodies." Cognition & Emotion 17(1): 25-40.
Garcia-Rill, E., K. Moran, J. Garcia, W. Findley, K. Walton, B. Strotman and R. Llinas
(2008). "Magnetic sources of the M50 response are localized to frontal cortex."
Clinical Neurophysiology 119(2): 388-398.
Gaser, C. and G. Schlaug (2003). "Brain structures differ between musicians and non-musicians." J Neurosci 23(27): 9240-9245.
Gebel, B., C. Braun, E. Kaza, E. Altenmuller and M. Lotze (2013). "Instrument specific
brain activation in sensorimotor and auditory representation in musicians."
Neuroimage 74: 37-44.
Grabner, R. H., E. Stern and A. C. Neubauer (2003). "When intelligence loses its
impact: neural efficiency during reasoning in a familiar area." Int J Psychophysiol
49(2): 89-98.
Greenberg, D. M., S. Baron-Cohen, D. J. Stillwell, M. Kosinski and P. J. Rentfrow
(2015). "Musical preferences are linked to cognitive styles." PloS one 10(7):
e0131151.
Groussard, M., F. Viader, B. Landeau, B. Desgranges, F. Eustache and H. Platel (2014).
"The effects of musical practice on structural plasticity: the dynamics of grey
matter changes." Brain Cogn 90: 174-180.
Hannon, E. E. and L. J. Trainor (2007). "Music acquisition: effects of enculturation and
formal training on development." Trends in cognitive sciences 11(11): 466-472.
Herdener, M., F. Esposito, F. di Salle, C. Boller, C. C. Hilti, B. Habermeyer, K. Scheffler,
S. Wetzel, E. Seifritz and K. Cattapan-Ludewig (2010). "Musical training induces
functional plasticity in human hippocampus." J Neurosci 30(4): 1377-1384.
Hornak, J., J. Bramham, E. T. Rolls, R. G. Morris, J. O'Doherty, P. R. Bullock and C. E.
Polkey (2003). "Changes in emotion after circumscribed surgical lesions of the
orbitofrontal and cingulate cortices." Brain 126(Pt 7): 1691-1712.
Humphreys, G. F. and M. A. L. Ralph (2014). "Fusion and fission of cognitive functions
in the human parietal cortex." Cerebral Cortex: bhu198.
Ian-Ting Chu, L.-F. C., Jen-Chuen Hsieh (2013). "Primary Dysmenorrhea Alters the
Perceptual Processing of
Emotional Prosody: A MEG Study."
Jäncke, L., T. Wüstenberg, H. Scheich and H.-J. Heinze (2002). "Phonetic perception
and the temporal cortex." Neuroimage 15(4): 733-746.
Jacob, H., B. Kreifelts, C. Bruck, M. Erb, F. Hosl and D. Wildgruber (2012). "Cerebral
integration of verbal and nonverbal emotional cues: impact of individual
nonverbal dominance." Neuroimage 61(3): 738-747.
Jancke, L. (2009). "Music drives brain plasticity." F1000 Biol Rep 1: 78.
Jantzen, M. G., B. M. Howe and K. J. Jantzen (2014). "Neurophysiological evidence
that musical training influences the recruitment of right hemispheric homologues
for speech perception." Front Psychol 5: 171.
Jeong, J. W., V. A. Diwadkar, C. D. Chugani, P. Sinsoongsud, O. Muzik, M. E. Behen, H.
T. Chugani and D. C. Chugani (2011). "Congruence of happy and sad emotion in
music and faces modifies cortical audiovisual activation." Neuroimage 54(4): 2973-Joanisse, M. F., J. D. Zevin and B. D. McCandliss (2007). "Brain mechanisms implicated
in the preattentive categorization of speech sounds revealed using FMRI and a
short-interval habituation trial paradigm." Cereb Cortex 17(9): 2084-2093.
Joos, K., A. Gilles, P. Van de Heyning, D. De Ridder and S. Vanneste (2014). "From
sensation to percept: the neural signature of auditory event-related potentials."
Neurosci Biobehav Rev 42: 148-156.
Juslin, P. N. (2000). "Cue utilization in communication of emotion in music
performance: relating performance to perception." Journal of Experimental
Psychology: Human perception and performance 26(6): 1797.
Juslin, P. N. and P. Laukka (2003). "Communication of emotions in vocal expression
and music performance: Different channels, same code?" Psychological bulletin
129(5): 770.
Juslin, P. N. and P. Laukka (2004). "Expression, perception, and induction of musical
emotions: A review and a questionnaire study of everyday listening." Journal of
New Music Research 33(3): 217-238.
Juslin, P. N. and E. Lindström (2003). Musical expression of emotions: Modeling
composed and performed features. Fifth Conference of the European Society for
the Cognitive Sciences of Music.
Juslin, P. N. and J. A. Sloboda (2001). Music and emotion: Theory and research,
Oxford University Press.
Kanske, P., A. Bockler, F. M. Trautwein and T. Singer (2015). "Dissecting the social
brain: Introducing the EmpaToM to reveal distinct neural networks and brain-
behavior relations for empathy and Theory of Mind." Neuroimage 122: 6-19.
Kikuchi, Y., K. Ogata, T. Umesaki, T. Yoshiura, M. Kenjo, Y. Hirano, T. Okamoto, S.
Komune and S. Tobimatsu (2011). "Spatiotemporal signatures of an abnormal
auditory system in stuttering." Neuroimage 55(3): 891-899.
Kizkin, S., R. Karlidag, C. Ozcan and H. I. Ozisik (2006). "Reduced P50 auditory sensory
gating response in professional musicians." Brain and cognition 61(3): 249-254.
Koelsch, S. (2009). "Music-syntactic processing and auditory memory: similarities and
differences between ERAN and MMN." Psychophysiology 46(1): 179-190.
Koelsch, S. (2010). "Towards a neural basis of music-evoked emotions." Trends in
cognitive sciences 14(3): 131-137.
Koelsch, S., A. Remppis, D. Sammler, S. Jentschke, D. Mietchen, T. Fritz, H.
Bonnemeier and W. A. Siebel (2007). "A cardiac signature of emotionality." Eur J
Neurosci 26(11): 3328-3338.
Koelsch, S., E. Schroger and M. Tervaniemi (1999). "Superior pre-attentive auditory
processing in musicians." Neuroreport 10(6): 1309-1313. Kraus, N. and B. Chandrasekaran (2010). "Music training for the development of
auditory skills." Nature Reviews Neuroscience 11(8): 599-605.
Kuriki, S., S. Kanda and Y. Hirata (2006). "Effects of musical experience on different
components of MEG responses elicited by sequential piano-tones and chords."
The Journal of Neuroscience 26(15): 4046-4053.
LaBar, K. S. and R. Cabeza (2006). "Cognitive neuroscience of emotional memory."
Nature Reviews Neuroscience 7(1): 54-64.
Lane, R. D. and G. E. Schwartz (1987). "Levels of emotional awareness: A cognitive-
developmental theory and its application to psychopathology." The American
Journal of Psychiatry.
Latinus, M. and P. Belin (2011). "Human voice perception." Curr Biol 21(4): R143-145.
Lima, C. F. and S. L. Castro (2011). "Speaking to the trained ear: musical expertise
enhances the recognition of emotions in speech prosody." Emotion 11(5): 1021-
1031.
Lin, C. S., Y. Liu, W. Y. Huang, C. F. Lu, S. Teng, T. C. Ju, Y. He, Y. T. Wu, T. Jiang and J. C.
Hsieh (2013). "Sculpting the Intrinsic Modular Organization of Spontaneous Brain
Activity by Art." PLoS One 8(6): e66761.
Liu, T., A. P. Pinheiro, G. Deng, P. G. Nestor, R. W. McCarley and M. A. Niznikiewicz
(2012). "Electrophysiological insights into processing nonverbal emotional
vocalizations." Neuroreport 23(2): 108-112.
Magne, C., D. Schon and M. Besson (2006). "Musician children detect pitch violations
in both music and language better than nonmusician children: behavioral and
electrophysiological approaches." J Cogn Neurosci 18(2): 199-211.
Marvin, E. W. and A. R. Brinkman (2000). "The effect of key color and timbre on
absolute pitch recognition in musical contexts." Music Perception: An
Interdisciplinary Journal 18(2): 111-137.
Matthews, T. (2014). The Impact of Specialized Musical Training on Rhythm Abilities:
Comparing Drummers, Pianists, Singers and String Players, Concordia University.
Meister, I. G., T. Krings, H. Foltys, B. Boroojerdi, M. Muller, R. Topper and A. Thron
(2004). "Playing piano in the mind--an fMRI study on music imagery and
performance in pianists." Brain Res Cogn Brain Res 19(3): 219-228.
Menon, V. and D. J. Levitin (2005). "The rewards of music listening: response and
physiological connectivity of the mesolimbic system." Neuroimage 28(1): 175-184.
Micheyl, C., K. Delhommeau, X. Perrot and A. J. Oxenham (2006). "Influence of
musical and psychoacoustical training on pitch discrimination." Hearing research
219(1): 36-47.
Miendlarzewska, E. A. and W. J. Trost (2013). "How musical training affects cognitive
development: rhythm, reward and other modulating variables." Frontiers in neuroscience 7.
Mitchell, R. L., R. Elliott, M. Barry, A. Cruttenden and P. W. Woodruff (2003). "The
neural response to emotional prosody, as revealed by functional magnetic
resonance imaging." Neuropsychologia 41(10): 1410-1421.
Mitterschiffthaler, M. T., C. H. Fu, J. A. Dalton, C. M. Andrew and S. C. Williams (2007).
"A functional MRI study of happy and sad affective states induced by classical
music." Hum Brain Mapp 28(11): 1150-1162.
Mohn, C., H. Argstatter and F.-W. Wilker (2010). "Perception of six basic emotions in
music." Psychology of music: 0305735610378183.
Montag, C., F. Schubert, A. Heinz and J. Gallinat (2008). "Prefrontal cortex glutamate
correlates with mental perspective-taking." PLoS One 3(12): e3890.
Moreno, S. and G. M. Bidelman (2014). "Examining neural plasticity and cognitive
benefit through the unique lens of musical training." Hear Res 308: 84-97.
MÜNTE, T. F., W. NAGER, T. BEISS, C. SCHROEDER and E. ALTENMÜLLER (2003).
"Specialization of the specialized: electrophysiological investigations in
professional musicians." Annals of the New York Academy of Sciences 999(1): 131-
139.
Näätänen, R., P. Paavilainen, T. Rinne and K. Alho (2007). "The mismatch negativity
(MMN) in basic research of central auditory processing: a review." Clinical
Neurophysiology 118(12): 2544-2590.
Nikjeh, D. A., J. J. Lister and S. A. Frisch (2009). "Preattentive cortical-evoked
responses to pure tones, harmonic tones, and speech: influence of music
training." Ear and hearing 30(4): 432-446.
Nusbaum, E. C. and P. J. Silvia (2010). "Shivers and timbres: Personality and the
experience of chills from music." Social Psychological and Personality Science:
1948550610386810.
Ochsner, K. N., K. Knierim, D. H. Ludlow, J. Hanelin, T. Ramachandran, G. H. Glover
and S. C. Mackey (2004). "Reflecting upon feelings: an fMRI study of neural
systems supporting the attribution of emotion to self and other." Cognitive
Neuroscience, Journal of 16(10): 1746-1772.
Olson, I. R., A. Plotzker and Y. Ezzyat (2007). "The Enigmatic temporal pole: a review
of findings on social and emotional processing." Brain 130(Pt 7): 1718-1731.
Opialla, S., J. Lutz, S. Scherpiet, A. Hittmeyer, L. Jancke, M. Rufer, M. Grosse Holtforth,
U. Herwig and A. B. Bruhl (2015). "Neural circuits of emotion regulation: a
comparison of mindfulness-based and cognitive reappraisal strategies." Eur Arch
Psychiatry Clin Neurosci 265(1): 45-55.
Pantev, C. and S. C. Herholz (2011). "Plasticity of the human auditory cortex related
to musical training." Neurosci Biobehav Rev 35(10): 2140-2154. Pantev, C., L. E. Roberts, M. Schulz, A. Engelien and B. Ross (2001). "Timbre-specific
enhancement of auditory cortical representations in musicians." Neuroreport
12(1): 169-174.
Park, M., E. Gutyrchik, Y. Bao, Y. Zaytseva, P. Carl, L. Welker, E. Poppel, M. Reiser, J.
Blautzik and T. Meindl (2014). "Differences between musicians and non-musicians
in neuro-affective processing of sadness and fear expressed in music." Neurosci
Lett 566: 120-124.
Park, M., E. Gutyrchik, L. Welker, P. Carl, E. Poppel, Y. Zaytseva, T. Meindl, J. Blautzik,
M. Reiser and Y. Bao (2014). "Sadness is unique: neural processing of emotions in
speech prosody in musicians and non-musicians." Front Hum Neurosci 8: 1049.
Patel, A. D. (2011). "Why would Musical Training Benefit the Neural Encoding of
Speech? The OPERA Hypothesis." Front Psychol 2: 142.
Pinheiro, A. P., M. Vasconcelos, M. Dias, N. Arrais and O. F. Goncalves (2015). "The
music of language: an ERP investigation of the effects of musical training on
emotional prosody processing." Brain Lang 140: 24-34.
Proverbio, A. M., M. Manfredi, A. Zani and R. Adorni (2013). "Musical expertise
affects neural bases of letter recognition." Neuropsychologia 51(3): 538-549.
Rabinowitch, T.-C., I. Cross and P. Burnard (2013). "Long-term musical group
interaction has a positive influence on empathy in children." Psychology of Music
41(4): 484-498.
Reybrouck, M. and E. Brattico (2015). "Neuroplasticity beyond Sounds: Neural
Adaptations Following Long-Term Musical Aesthetic Experiences." Brain Sci 5(1):
69-91.
Ross, E. D. and M. Monnot (2008). "Neurology of affective prosody and its
functional–anatomic organization in right hemisphere." Brain and language
104(1): 51-74.
Salimpoor, V. N., I. van den Bosch, N. Kovacevic, A. R. McIntosh, A. Dagher and R. J.
Zatorre (2013). "Interactions between the nucleus accumbens and auditory
cortices predict music reward value." Science 340(6129): 216-219.
Sander, D., D. Grandjean, G. Pourtois, S. Schwartz, M. L. Seghier, K. R. Scherer and P.
Vuilleumier (2005). "Emotion and attention interactions in social cognition: brain
regions involved in processing anger prosody." Neuroimage 28(4): 848-858.
Schaal, N. K., V. Krause, K. Lange, M. J. Banissy, V. J. Williamson and B. Pollok (2015).
"Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences
Using Transcranial Direct Current Stimulation." Cereb Cortex 25(9): 2774-2782.
Schirmer, A., P. M. Fox and D. Grandjean (2012). "On the spatial organization of sound
processing in the human temporal lobe: a meta-analysis." Neuroimage 63(1): 137-
147. Schirmer, A. and S. A. Kotz (2006). "Beyond the right hemisphere: brain mechanisms
mediating vocal emotional processing." Trends Cogn Sci 10(1): 24-30.
Schlaug, G., L. Jäncke, Y. Huang, J. F. Staiger and H. Steinmetz (1995). "Increased
corpus callosum size in musicians." Neuropsychologia 33(8): 1047-1055.
Schneider, P., V. Sluming, N. Roberts, M. Scherg, R. Goebel, H. J. Specht, H. G. Dosch,
S. Bleeck, C. Stippich and A. Rupp (2005). "Structural and functional asymmetry of
lateral Heschl's gyrus reflects pitch perception preference." Nat Neurosci 8(9):
1241-1247.
Schubert, E. and J. Wolfe (2014). "The rise of fixed pitch systems and the slide of
continuous pitch: A note for emotion in music research about portamento." jims
2014: 001.
Shahin, A., D. J. Bosnyak, L. J. Trainor and L. E. Roberts (2003). "Enhancement of
neuroplastic P2 and N1c auditory evoked potentials in musicians." The Journal of
Neuroscience 23(13): 5545-5552.
Spreckelmeyer, K. N., E. Altenmuller, H. Colonius and T. F. Munte (2013). "Preattentive
processing of emotional musical tones: a multidimensional scaling and ERP study."
Front Psychol 4: 656.
Steinbeis, N., B. C. Bernhardt and T. Singer (2015). "Age-related differences in
function and structure of rSMG and reduced functional connectivity with DLPFC
explains heightened emotional egocentricity bias in childhood." Soc Cogn Affect
Neurosci 10(2): 302-310.
Strait, D. L. and N. Kraus (2014). "Biological impact of auditory expertise across the
life span: musicians as a model of auditory learning." Hear Res 308: 109-121.
Strait, D. L., N. Kraus, E. Skoe and R. Ashley (2009). "Musical experience and neural
efficiency: effects of training on subcortical processing of vocal expressions of
emotion." Eur J Neurosci 29(3): 661-668.
Strait, D. L., N. Kraus, E. Skoe and R. Ashley (2009). "Musical experience promotes
subcortical efficiency in processing emotional vocal sounds." Ann N Y Acad Sci
1169: 209-213.
Tervaniemi, M., V. Just, S. Koelsch, A. Widmann and E. Schroger (2005). "Pitch
discrimination accuracy in musicians vs nonmusicians: an event-related potential
and behavioral study." Exp Brain Res 161(1): 1-10.
Tervaniemi, M., S. Kruck, W. De Baene, E. Schröger, K. Alter and A. D. Friederici
(2009). "Top‐down modulation of auditory processing: effects of sound context,
musical expertise and attentional focus." European Journal of Neuroscience 30(8):
1636-1642.
Thompson, W. F., E. G. Schellenberg and G. Husain (2004). "Decoding speech
prosody: do music lessons help?" Emotion 4(1): 46-64.
Thonnessen, H., F. Boers, J. Dammers, Y. H. Chen, C. Norra and K. Mathiak (2010).
"Early sensory encoding of affective prosody: neuromagnetic tomography of
emotional category changes." Neuroimage 50(1): 250-259.
Vines, B. W., C. L. Krumhansl, M. M. Wanderley and D. J. Levitin (2006). "Cross-modal
interactions in the perception of musical performance." Cognition 101(1): 80-113.
Vollmann, H., P. Ragert, V. Conde, A. Villringer, J. Classen, O. W. Witte and C. J. Steele
(2014). "Instrument specific use-dependent plasticity shapes the anatomical
properties of the corpus callosum: a comparison between musicians and non-
musicians." Front Behav Neurosci 8: 245.
Vuilleumier, P. (2005). "How brains beware: neural mechanisms of emotional
attention." Trends Cogn Sci 9(12): 585-594.
Wöllner, C. (2012). "Is empathy related to the perception of emotional expression in
music? A multimodal time-series analysis." Psychology of Aesthetics, Creativity,
and the Arts 6(3): 214.
Ward, J. (2015). The student's guide to cognitive neuroscience, Psychology Press.
Weinberger, N. M. (2004). "Music and the brain." Scientific American 291(5): 88-95.
Wildgruber, D., H. Ackermann, B. Kreifelts and T. Ethofer (2006). "Cerebral processing
of linguistic and emotional prosody: fMRI studies." Progress in brain research 156:
249-268.
Wildgruber, D., I. Hertrich, A. Riecker, M. Erb, S. Anders, W. Grodd and H. Ackermann
(2004). "Distinct frontal regions subserve evaluation of linguistic and emotional
aspects of speech intonation." Cerebral cortex 14(12): 1384-1389.
Wildgruber, D., H. Pihan, H. Ackermann, M. Erb and W. Grodd (2002). "Dynamic brain
activation during processing of emotional intonation: influence of acoustic
parameters, emotional valence, and sex." Neuroimage 15(4): 856-869.
Wildgruber, D., A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer and H. Ackermann
(2005). "Identification of emotional intonation evaluated by fMRI." Neuroimage
24(4): 1233-1241.
Witteman, J., V. J. Van Heuven and N. O. Schiller (2012). "Hearing feelings: a
quantitative meta-analysis on the neuroimaging literature of emotional prosody
perception." Neuropsychologia 50(12): 2752-2763.
Woldorff, M. G., C. C. Gallen, S. A. Hampson, S. A. Hillyard, C. Pantev, D. Sobel and F.
E. Bloom (1993). "Modulation of early sensory processing in human auditory
cortex during auditory selective attention." Proceedings of the National Academy
of Sciences 90(18): 8722-8726.
電子全文 電子全文(網際網路公開日期:20210621)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔