|
Reference Apostolova, L. G., & Thompson, P. M. (2008). Mapping progressive brain structural changes in early Alzheimer's disease and mild cognitive impairment. Neuropsychologia, 46(6), 1597-1612.
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. Neuroimage, 11(6), 805-821.
Delacourte, A., & Defossez, A. (1986). Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. Journal of the neurological sciences, 76(2), 173-186.
Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., ... & Gong, Y. (2013, May). Recent advances in deep learning for speech research at Microsoft. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 8604-8608). IEEE.
Douaud, G., Jbabdi, S., Behrens, T. E., Menke, R. A., Gass, A., Monsch, A. U., ... & Smith, S. (2011). DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease. Neuroimage, 55(3), 880-890.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1026-1034).
Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science, 225(4667), 1168-1170.
Ilonen, J., et al. (2003). "Differential evolution training algorithm for feed-forward neural networks." Neural Processing Letters 17(1): 93-105.
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
Jenkinson, M., Pechaud, M., & Smith, S. (2005, June). BET2: MR-based estimation of brain, skull and scalp surfaces. In Eleventh annual meeting of the organization for human brain mapping (Vol. 17, p. 167).
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 675-678). ACM.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
Le, Q. V., Zou, W. Y., Yeung, S. Y., & Ng, A. Y. (2011, June). Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 3361-3368). IEEE.
LeCun, Y., et al. (1995). Comparison of learning algorithms for handwritten digit recognition. International conference on artificial neural networks.
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., ... & Mohs, R. C. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia, 7(3), 263-269.
Mei, P. A., de Carvalho Carneiro, C., Fraser, S. J., Min, L. L., & Reis, F. (2015). Analysis of neoplastic lesions in magnetic resonance imaging using self-organizing maps. Journal of the neurological sciences, 359(1), 78-83.
Merriam, A. E., Aronson, M. K., Gaston, P., Wey, S. L., & Katz, I. (1988). The psychiatric symptoms of Alzheimer's disease. Journal of the American Geriatrics Society, 36(1), 7-22.
Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming (Vol. 13). Siam.
Nestor, S. M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., Wells, J. L., ... & Alzheimer's Disease Neuroimaging Initiative. (2008). Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database. Brain, 131(9), 2443-2454.
Payan, A., & Montana, G. (2015). Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506.
Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., ... & Larson, E. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature medicine, 2(8), 864-870.
Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 806-813).
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K. L., ... & Toga, A. W. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39(3), 1064-1080.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.
Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J. C., ... & Miller, M. I. (2007). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE transactions on medical imaging, 26(4), 462-470.
Yang, S. T., Lee, J. D., Chang, T. C., Huang, C. H., Wang, J. J., Hsu, W. C., ... & Li, K. Y. (2013). Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM. Computational and mathematical methods in medicine, 2013.
Yoshita, M., Fletcher, E., Harvey, D., Ortega, M., Martinez, O., Mungas, D. M., ... & DeCarli, C. S. (2006). Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology, 67(12), 2192-2198.
Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 45-57.
|