跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方毅雄
研究生(外文):FANG,YI-HSIUNG
論文名稱:非對稱變頻半橋轉換電路之電量平衡器
論文名稱(外文):A Charge Equalizer with Asymmetrical Pulse-Frequency Modulated Half-Bridge Converter
指導教授:華志強華志強引用關係
指導教授(外文):HUA,CHIH-CHIANG
口試委員:陳建富莫清賢陳財榮王孟輝趙貴祥
口試委員(外文):CHEN,JIANN-FUHMOO,CHIN-SIENCHEN,TSAIR-RONGWANG,MENG-HUICHAO,KUEI-HSIANG
口試日期:2016-05-30
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:電動車串聯電池組鋰離子電池電量平衡器
外文關鍵詞:electric vehicleseries-connected batterieslithium-ion batterycharge equalizer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一非對稱變頻半橋轉換電路之電量平衡器。所提出的電量平衡器不只具有多變壓器型半橋電量平衡器之優點,且能藉由移除分壓電解電容來提升電量平衡器的可靠度。由於無須使用消除變壓器直流成分的交流耦合電容,使得串聯電池組中具有較高電壓的那半側電池組能釋放出比具有較低電壓的那半側電池組更多的能量,以提升電量平衡的性能。除此之外,所提出之非對稱變頻控制技術不僅可以達到主動功率開關的柔性切換來減少開關的切換損失,以提高電量平衡器的電路效率,更可確保功率變壓器能夠正常運作,避免變壓器鐵芯發生磁通飽和的情況。
另一方面,所提出的新型整流電路不僅結合了全波倍壓整流電路與中央抽頭整流電路之優點,更可藉由採用商用橋式整流器來簡化印刷電路板的電路布局,降低整體電路的尺寸。而所提出之新型整流電路所使用到的商用橋式整流器,也只需傳統橋式整流電路的一半,降低了元件的數量與實現的成本。
本論文已在不同章節中詳細地分別陳述所提出的電路架構、操作分析與控制策略,並加以設計和模擬所提出之電量平衡器。最後藉由實作與測試雛形電路來證實所提出之電量平衡器的可行性與其性能。
This dissertation presents a charge equalizer with asymmetrical pulse-frequency modulated half-bridge converter. The proposed charge equalizer has all of the advantages of the multiple transformers type equalizer based on a half-bridge converter, and the reliability of the charge equalizer can be improved due to no split capacitors. Moreover, the coupling capacitor is removed so that the charge equalization performance is enhanced since the half battery pack that has high voltage will release more energy than that has low voltage. And the efficiency of the proposed circuit can be improved because the soft-switching of the active power switches can be achieved by the proposed control method.
On the other hand, a novel rectifier is presented by combining the advantages of the voltage-doubler rectifier and the center-tapped rectifier. In addition, the proposed rectifier can be implemented by using the commercial bridge rectifier to simplify the layout of printed circuit board and to reduce the circuit size and cost. Compared to the general application of the commercial bridge rectifier, the commercial bridge rectifiers for the proposed charge equalizer can be halved by the proposed application.
The circuit topology, operation analysis and control strategy of the proposed charge equalizer are described in detail. Finally, a prototype circuit is designed and implemented. Simulations and experimental results are provided to verify the feasibility and performance of the proposed charge equalizer.
摘要 i
Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures vi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Objective 7
1.3 Dissertation Outline 11
Chapter 2 Circuit Topology of the Proposed Charge Equalizer 12
2.1 Proposed Half-Bridge Converter 12
2.2 Proposed Rectifier 14
2.3 Summary 15
Chapter 3 Operation Analysis of the Proposed Charge Equalizer 17
3.1 Assumptions 17
3.2 Operation Analysis 18
3.3 Summary 30
Chapter 4 Control Strategy of the Proposed Charge Equalizer 31
4.1 Asymmetrical Pulse-Width Modulation (APWM) Control 31
4.2 Pulse-Frequency Modulation (PFM) Control 33
4.3 Summary 34
Chapter 5 Simulation Results of the Proposed Charge Equalizer 36
5.1 Simulated Waveforms of the Primary-Side 36
5.2 Simulated Waveforms of the Secondary-Side 38
5.3 Summary 40
Chapter 6 Experimental Results of the Proposed Charge Equalizer 41
6.1 Design and Implementation of the Proposed Charge Equalizer 41
6.2 Measurements of Key Waveforms 45
6.3 Charge Equalization Performance Test 48
6.4 Summary 50
Chapter 7 Conclusion and Future Work 51
7.1 Conclusion 51
7.2 Future Work 52
References 53
List of Publications 62
[1]L. Lam and P. Bauer, “Practical capacity fading model for Li-ion battery cells in electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5910–5918, Dec. 2013.
[2]S. J. Huang, B. G. Huang, and F. S. Pai, “Fast charge strategy based on the characterization and evaluation of LiFePO4 batteries,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1555–1562, Apr. 2013.
[3]C. C. Hua and Y. H. Fang, “A charge equalizer with a combination of APWM and PFM control based on a modified half-bridge converter,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2970–2979, Apr. 2016.
[4]C. H. Kim, M. Y. Kim, H. S. Park, and G. W. Moon, “A modularized two-stage charge equalizer with cell selection switches for series-connected lithium-ion battery string in an HEV,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3764–3774, Aug. 2012.
[5]A. Manenti, A. Abba, A. Merati, S. M. Savaresi, and A. Geraci, “A new BMS architecture based on cell redundancy,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4314–4321, Sep. 2011.
[6]F. Baronti, G. Fantechi, R. Roncella, and R. Saletti, “High-efficiency digitally controlled charge equalizer for series-connected cells based on switching converter and super-capacitor,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1139–1147, May 2013.
[7]C. S. Lim, K. J. Lee, N. J. Ku, D. S. Hyun, and R. Y. Kim, “A modularized equalization method based on magnetizing energy for a series-connected lithium-ion battery string,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1791–1799, Apr. 2014.
[8]C. C. Hua, Y. H. Fang, and P. H. Li, “Charge equalisation for series-connected LiFePO4 battery strings,” IET Power Electron., vol. 8, no. 6, pp. 1017–1025, Jun. 2015.
[9]Y. Chen, X. Liu, Y. Cui, J. Zou, and S. Yang, “A multiwinding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4916–4929, Jul. 2016.
[10]S. Li, C. C. Mi, and M. Zhang, “A high-efficiency active battery-balancing circuit using multiwinding transformer,” IEEE Trans. Ind. Appl., vol. 49, no. 1, pp. 198–207, Jan.–Feb. 2013.
[11]H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon, and J. H. Lee, “A modularized charge equalizer for an HEV lithium-ion battery string,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1464–1476, May 2009.
[12]F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella, and R. Saletti, “Design and safety verification of a distributed charge equalizer for modular Li-ion batteries,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1003–1011, May 2014.
[13]C. Blanco, L. Sánchez, M. Gonzalez, J. C. Anton, V. Garcia, and J. C. Viera, “An equivalent circuit model with variable effective capacity for LiFePO4 batteries,” IEEE Trans. Veh. Technol., vol. 63, no. 8, pp. 3592–3599, Oct. 2014.
[14]M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte, C. Kral, and J. Fleig, “A current equalization method for serially connected battery cells using a single power converter for each cell,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4227–4237, Nov. 2011.
[15]J. Kim, J. Shin, C. Chun, and B. H. Cho, “Stable configuration of a Li-ion series battery pack based on a screening process for improved voltage/SOC balancing,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 411–424, Jan. 2012.
[16]W. C. Lee and D. Drury, “Development of a hardware-in-the-loop simulation system for testing cell balancing circuits,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5949–5959, Dec. 2013.
[17]M. Uno and K. Tanaka, “Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1505–1515, May 2011.
[18]J. D. Dogger, B. Roossien, and F. D. J. Nieuwenhout, “Characterization of Li-ion batteries for intelligent management of distributed grid-connected storage,” IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 256–263, Mar. 2011.
[19]A. A. H. Hussein and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 830–838, Mar. 2011.
[20]Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297–1307, Oct. 2005.
[21]Y. C. Hsieh, J. L. Wu, and X. H. Chen, “Class-E-based charge-equalisation circuit for battery cells,” IET Power Electron., vol. 5, no. 7, pp. 978–983, Aug. 2012.
[22]M. Y. Kim, C. H. Kim, J. H. Kim, and G. W. Moon, “A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3989–3999, Aug. 2014.
[23]C. H. Kim, M. Y. Kim, and G. W. Moon, “A modularized charge equalizer using a battery monitoring IC for series-connected Li-ion battery strings in electric vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3779–3787, Aug. 2013.
[24]R. J. Wai and S. J. Jhung, “Design of energy-saving adaptive fast-charging control strategy for Li-Fe-PO4 battery module,” IET Power Electron., vol. 5, no. 9, pp. 1684–1693, Nov. 2012.
[25]F. J. Lin, M. S. Huang, Y. C. Hung, C. H. Kuan, S. L. Wang, and Y. D. Lee, “Takagi–Sugeno–Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system,” IET Power Electron., vol. 6, no. 6, pp. 1029–1040, Jul. 2013.
[26]H. Qian, J. Zhang, J. S. Lai, and W. Yu, “A high-efficiency grid-tie battery energy storage system,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 886–896, Mar. 2011.
[27]S. H. Park, K. B. Park, H. S. Kim, G. W. Moon, and M. J. Youn, “Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2900–2911, Jun. 2012.
[28]Y. H. Hsieh, T. J. Liang, S. M. Chen, W. Y. Horng, and Y. Y. Chung, “A novel high-efficiency compact-size low-cost balancing method for series-connected battery applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5927–5939, Dec. 2013.
[29]M. Uno and K. Tanaka, “Single-switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3227–3239, Aug. 2013.
[30]H. Chen, L. Zhang, and Y. Han, “System-theoretic analysis of a class of battery equalization systems: mathematical modeling and performance evaluation,” IEEE Trans. Veh. Technol., vol. 64, no. 4, pp. 1445–1457, Apr. 2015.
[31]Y. Yuanmao, K. W. E. Cheng, and Y. P. B. Yeung, “Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3234–3242, Jul. 2012.
[32]Y. S. Lee and G. T. Cheng, “Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1213–1224, Sep. 2006.
[33]W. Huang and J. A. Abu Qahouq, “Energy sharing control scheme for state-of-charge balancing of distributed battery energy storage system,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2764–2776, May 2015.
[34]A. Xu, S. Xie, and X. Liu, “Dynamic voltage equalization for series-connected ultracapacitors in EV/HEV applications,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3981–3987, Oct. 2009.
[35]P. A. Cassani and S. S. Williamson, “Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3956–3962, Dec. 2010.
[36]W. L. Chen and S. R. Cheng, “Optimal charge equalisation control for series-connected batteries,” IET Generation, Transmiss. Distrib., vol. 7, no. 8, pp. 843–854, Aug. 2013.
[37]J. Ewanchuk and J. Salmon, “A modular balancing bridge for series connected voltage sources,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4712–4722, Sep. 2014.
[38]M. Y. Kim, J. H. Kim, and G. W. Moon, “Center-cell concentration structure of a cell-to-cell balancing circuit with a reduced number of switches,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5285–5297, Oct. 2014.
[39]B. Dong, Y. Li, and Y. Han, “Parallel architecture for battery charge equalization,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4906–4913, Sep. 2015.
[40]P. A. Cassani and S. S. Williamson, “Feasibility analysis of a novel cell equalizer topology for plug-in hybrid electric vehicle energy-storage systems,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3938–3946, Oct. 2009.
[41]L. Y. Wang, M. P. Polis, G. G. Yin, W. Chen, Y. Fu, and C. C. Mi, “Battery cell identification and SOC estimation using string terminal voltage measurements,” IEEE Trans. Veh. Technol., vol. 61, no. 7, pp. 2925–2935, Sep. 2012.
[42]H. S. Park, C. H. Kim, K. B. Park, G. W. Moon, and J. H. Lee, “Design of a charge equalizer based on battery modularization,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3216–3223, Sep. 2009.
[43]T. H. Phung, A. Collet, and J. C. Crebier, “An optimized topology for next-to-next balancing of series-connected lithium-ion cells,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4603–4613, Sep. 2014.
[44]M. Uno and K. Tanaka, “Single-switch cell voltage equalizer using multistacked buck-boost converters operating in discontinuous conduction mode for series-connected energy storage cells,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3635–3645, Oct. 2011.
[45]S. Yarlagadda, T. T. Hartley, and I. Husain, “A battery management system using an active charge equalization technique based on a DC/DC converter topology,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2720–2729, Nov.–Dec. 2013.
[46]T. T. Ngoc Nguyen, H. G. Yoo, S. K. Oruganti, and F. Bien, “Neuro-fuzzy controller for battery equalisation in serially connected lithium battery pack,” IET Power Electron., vol. 8, no. 3, pp. 458–466, Mar. 2015.
[47]A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2277–2285, Jun. 2008.
[48]M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2448–2457, Jul. 2011.
[49]M. A. Roscher, J. Assfalg, and O. S. Bohlen, “Detection of utilizable capacity deterioration in battery systems,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 98–103, Jan. 2011.
[50]W. Wang, H. S. H. Chung, and J. Zhang, “Near-real-time parameter estimation of an electrical battery model with mulitple time consonants and SOC-dependent capacitance,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5905–5920, Nov. 2014.
[51]M. Vasiladiotis and A. Rufer, “Analysis and control of modular multilevel converters with integrated battery energy storage,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 163–175, Jan. 2015.
[52]F. Mestrallet, L. Kerachev, J. C. Crebier, and A. Collet, “Multiphase interleaved converter for lithium battery active balancing,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2874–2881, Jun. 2014.
[53]D. Linzen, S. Buller, E. Karden, and R. W. De Doncker, “Analysis and evaluation of charge-balancing circuits on performance, reliability, and lifetime of supercapacitor systems,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1135–1141, Sep.–Oct. 2005.
[54]Z. Shu, H. Zhu, X. He, N. Ding, and Y. Jing, “One-inductor-based auxiliary circuit for DC-link capacitor voltage equalisation of diode-clamped multilevel converter,” IET Power Electron., vol. 6, no. 7, pp. 1339–1349, Aug. 2013.
[55]K. M. Yoo, K. D. Kim, and J. Y. Lee, “Single- and three-phase PHEV onboard battery charger using small link capacitor,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3136–3144, Aug. 2013.
[56]W. J. Lee and S. K. Sul, “DC-link voltage stabilization for reduced DC-link capacitor inverter,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 404–414, Jan.–Feb. 2014.
[57]H. Wang, H. S. H. Chung, and W. Liu, “Use of a series voltage compensator for reduction of the DC-link capacitance in a capacitor-supported system,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1163–1175, Mar. 2014.
[58]H. Keyhani and H. A. Toliyat, “A soft-switched three-phase AC–AC converter with a high-frequency AC link,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2637–2647, Jul.–Aug. 2014.
[59]C. Li, Y. Deng, Z. Lv, W. Li, X. He, and Y. Wang, “Virtual quadrature source-based sinusoidal modulation applied to high-frequency link converter enabling arbitrary direct AC-AC power conversion,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4195–4208, Aug. 2014.
[60]Y. Hu, W. Cao, S. J. Finney, W. Xiao, F. Zhang, and S. F. McLoone, “New modular structure DC–DC converter without electrolytic capacitors for renewable energy applications,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1184–1192, Oct. 2014.
[61]F. Sichirollo, J. M. Alonso, and G. Spiazzi, “A novel double integrated buck offline power supply for solid-state lighting applications,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1268–1276, Mar.–Apr. 2015.
[62]H. Ma, J. S. Lai, C. Zheng, and P. Sun, “A high-efficiency quasi-single-stage bridgeless electrolytic capacitor-free high-power AC–DC driver for supplying multiple LED strings in parallel,” IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5825–5836, Aug. 2016.
[63]C. M. Wang, “A novel single-switch single-stage electronic ballast with high input power factor,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 797–803, May 2007.
[64]W. Y. Choi and J. S. Yoo, “A bridgeless single-stage half-bridge AC/DC converter,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3884–3895, Dec. 2011.
[65]B. Su, J. Zhang, H. Wen, and Z. Lu, “Low conduction loss and low device stress three-level power factor correction rectifier,” IET Power Electron., vol. 6, no. 3, pp. 478–487, Mar. 2013.
[66]P. J. Wolfs, “A current-sourced DC-DC converter derived via the duality principle from the half-bridge converter,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 139–144, Feb. 1993.
[67]I. O. Lee and G. W. Moon, “Soft-switching DC/DC converter with a full ZVS range and reduced output filter for high-voltage applications,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 112–122, Jan. 2013.
[68]D. Y. Kim, C. E. Kim, and G. W. Moon, “High-efficiency slim adapter with low-profile transformer structure,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3445–3449, Sep. 2012.
[69]H. Wu, Y. Lu, T. Mu, and Y. Xing, “A family of soft-switching DC–DC converters based on a phase-shift-controlled active boost rectifier,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 657–667, Feb. 2015.
[70]H. L. Do, “Active-clamp soft-switching step-up converter with high-voltage gain,” IET Power Electron., vol. 4, no. 9, pp. 1043–1050, Nov. 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top