|
Alaeddini, A., Ghazanfari, M., & Nayeri, M. A. (2009). A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Information Sciences, 179(11), 1769-1784. doi:10.1016/j.ins.2009.01.019 Amiri, A., & Allahyari, S. (2012). Change point estimation methods for control chart postsignal diagnostics: a literature review. Quality and Reliability Engineering International, 28(7), 673-685. doi:10.1002/qre.1266 Amiri, A., & Khosravi, R. (2012). Estimating the change point of the cumulative count of a conforming control chart under a drift. Scientia Iranica, 19(3), 856-861. doi:10.1016/j.scient.2011.12.015 Amiri, A., & Khosravi, R. (2013). Identifying time of a monotonic change in the fraction nonconforming of a high-quality process. The International Journal of Advanced Manufacturing Technology, 68(1-4), 547-555. doi:10.1007/s00170-013-4776-5 Assareh, H., Noorossana, R., & Mengersen, K. L. (2013). Bayesian change point estimation in Poisson-based control charts. Journal of Industrial Engineering International, 9(1), 32. doi:10.1186/2251-712X-9-32 Hosseini, R., Amirzadeh, V., Yaghoobi, M. A., & Mirzaie, H. (2014). Approximating the step change point of the process fraction nonconforming using genetic algorithm to optimize the likelihood function. Journal of Industrial and Systems Engineering, 7(1), 118-128. Kazemi, M., Kazemi, K., Yaghoobi, M., & Bazargan, H. (2016). A hybrid method for estimating the process change point using support vector machine and fuzzy statistical clustering. Applied Soft Computing, 40, 507-516. Kazemi, M. S., Bazargan, H., & Yaghoobi, M. A. (2014). Estimating the drift time for processes subject to linear trend disturbance using fuzzy statistical clustering. International Journal of Production Research, 52(11), 3317-3330. doi:10.1080/00207543.2013.872312 Maleki, M., Amiri, A., & Mousavi, S. (2015). Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation. Journal of Industrial Engineering International, 11(4), 505-515. doi:10.1007/s40092-015-0117-7 Niaki, S., & Khedmati, M. (2012). Detecting and estimating the time of a step-change in multivariate Poisson processes. Scientia Iranica, 19(3), 862-871. doi:10.1016/j.scient.2011.11.044 Niaki, S. T. A., Afroozan, S., & Soleimani, P. (2013). MLE of the step-change point in bivariate binomial processes. Journal of Industrial and Systems Engineering, 7(1), 1-10. Niaki, S. T. A., & Khedmati, M. (2013). Identifying the change time of multivariate binomial processes for step changes and drifts. Journal of Industrial Engineering International, 9(1), 1-11. doi:10.1186/2251-712X-9-3 Niaki, S. T. A., & Khedmati, M. (2014). Change point estimation of high-yield processes experiencing monotonic disturbances. Computers & Industrial Engineering, 67, 82-92. doi:10.1016/j.cie.2013.11.003 Niaki, S. T. A., & Khedmati, M. (2014). Monotonic change-point estimation of multivariate Poisson processes using a multi-attribute control chart and MLE. International journal of production research, 52(10), 2954-2982. doi:10.1080/00207543.2013.857797 Niaki, S. T. A., & Khedmati, M. (2014). Step change-point estimation of multivariate binomial processes. International Journal of Quality & Reliability Management, 31(5), 566-587. doi:10.1108/IJQRM-07-2012-0101 Nishina, K. (1992). A comparison of control charts from the viewpoint of change‐point estimation. Quality and Reliability Engineering International, 8(6), 537-541. doi:10.1002/qre.4680080605 Noorossana, R., Saghaei, A., Paynabar, K., & Abdi, S. (2009). Identifying the period of a step change in high-yield processes. Quality and Reliability Engineering International, 25(7), 875-883. doi:10.1002/qre.1007 Page, E. (1954). Continuous inspection schemes. Biometrika, 100-115. doi:10.1093/biomet/41.1-2.100 Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2006). Estimating the change point of a poisson rate parameter with a linear trend disturbance. Quality and Reliability Engineering International, 22(4), 371-384. doi:10.1002/qre.715 Perry, M. B., & Pignatiello Jr, J. J. (2005). Estimation of the change point of the process fraction nonconforming in SPC applications. International Journal of Reliability, Quality and Safety Engineering, 12(02), 95-110. doi:10.1142/S0218539305001719 Perry, M. B., & Pignatiello Jr, J. J. (2011). Estimating the time of step change with poisson CUSUM and EWMA control charts. International journal of production research, 49(10), 2857-2871. doi:10.1080/00207541003690082 Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2007a). Estimating the change point of the process fraction non‐conforming with a monotonic change disturbance in SPC. Quality and Reliability Engineering International, 23(3), 327-339. doi:10.1142/S0218539305001719 Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2007b). Change point estimation for monotonically changing poisson rates in SPC. International Journal of Production Research, 45(8), 1791-1813. doi:10.1080/00207540600622449 Pignatiello Jr, J. J., & Samuel, T. R. (2001). Identifying the time of a step-change in the process fraction nonconforming. Quality Engineering, 13(3), 357-365. doi:10.1080/08982110108918663 Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A. (1998). Identifying the time of a step change in a normal process variance. Quality Engineering, 10(3), 529-538. doi:10.1080/08982119808919167 Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A. (1998a). Identifying the time of a step change with Xbar control charts. Quality Engineering, 10(3), 521-527. doi:10.1080/08982119808919166 Samuel, T. R., & Pignatjello Jr, J. J. (1998b). Identifying the time of a change in a poisson rate parameter. Quality Engineering, 10(4), 673-681. doi:10.1080/08982119808919185 Shao, Y. E., & Lin, K.-S. (2015). Change point determination for an attribute process using an artificial neural network-based approach. Discrete Dynamics in Nature and Society, 2015. doi:10.1155/2015/892740 Takeshi Emura, Y.-T. H. (2016). A decision theoretic approach to change point estimation for binomial CUSUM control charts. Sequential Analysis, 35(2). doi:0.1080/07474946.2016.1165543 Woodall, W. H. (1997). Control charts based on attribute data: bibliography and review. Journal of quality technology, 29(2), 172-183. Zamba, K., & Hawkins, D. M. (2006). A multivariate change-point model for statistical process control. Technometrics, 48(4), 539-549. doi:10.1198/004017006000000291 Zandi, F., Niaki, S., Nayeri, M., & Fathi, M. (2011). Change-point estimation of the process fraction non-conforming with a linear trend in statistical process control. International Journal of Computer Integrated Manufacturing, 24(10), 939-947. doi:10.1080/0951192X.2011.608720 Zarandi, M. H. F., & Alaeddini, A. (2010). A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts. Information Sciences, 180(16), 3033-3044.
|