(3.232.129.123) 您好!臺灣時間:2021/02/26 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張嘉儀
研究生(外文):CHANG, CHIA-YI
論文名稱:應用模糊統計集群法於p管制圖估計改變點之研究
論文名稱(外文):Change-Point Estimation of the Process Fraction Non-conforming Using Fuzzy Statistical Clustering Approach
指導教授:邱靜娥邱靜娥引用關係
指導教授(外文):CHIU,JING-ER
口試委員:吳政翰張俊郎
口試日期:2016-06-06
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:改變點估計製程不合格率p管制圖模糊統計集群法
外文關鍵詞:Change point estimatingprocess fraction nonconformingp control chartFuzzy statistical clustering approach
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SPC管制圖是最常使用在監測製程是否產生改變的工具,當失控信號產生時,表示製程已經受到干擾而產生改變,工程師必須判斷造成製程改變是否為可歸屬原因(assignable cause),並進一步尋找製程真正的改變時間以排除製程失控狀態,然而製程真實發生改變後還需要一段時間才會在管制圖中產生失控信號,因此估計出製程真正的改變點(change point)能夠幫助工程師更快速地找到可歸屬原因並改善失控製程。
在實務製程中,工程師無法事先得知製程的改變類型,若將線性估計量(linear estimator)使用在製程改變類型為階梯式改變(step change)時,或是將階梯式估計量(step estimator)使用在製程改變類型為線性偏移(linear trend)時,就會產生估計錯誤導致工程師誤判,因此本研究使用斜率判定係數法(slope coefficient of determination approach)估計出製程判定斜率,並應用模糊統計集群法(fuzzy statistical clustering approach)於p管制圖中來估計製程改變點,最後經由模擬結果及實例驗證發現,使用斜率判定係數法判定製程為階梯式改變或是線性偏移的分類並沒有達到很有效的分類正確率,未來研究方向可針對不同的參數設定值進行模擬以提高分類正確率。

Statistical process control (SPC) charts are the most popular tools used to monitor process shift. When it generates an out-of-control signal in a SPC chart, it means the disturbance is present in the process. Engineers have to identify the assignable cause and eliminate it. However, the out-of-control signal is usually followed by a considerable amount of delay from the actual time of the change. The method of identity the actual time of change is knows a change point estimation problem.
In practice, engineers cannot know in advance the type of change in process. The inaccurate estimation would result them to misdiagnose if using linear estimator in a step change process or if using step estimator in a linear trend process. In this work, the slope coefficient of determination approach was used to estimate the slope of the linear trend. According to the value of the estimated slope, the fuzzy statistical clustering approach was then used to identify the change point in p control chart. Finally, the simulation results and practice example are conducted to verify and validate whether the slope coefficient of determination approach enables effectively detecting step changes or linear trend changes in a process. The results show that the classification accuracies of the proposed method are not high enough. In future work, the researchers can discuss the proposed method with the different parameter settings.

摘要......................................i
ABSTRACT.................................ii
誌謝....................................iii
目錄.....................................iv
表目錄...................................vi
圖目錄..................................vii
第一章 緒論...............................1
1.1 研究背景..........................1
1.2 研究目的..........................4
1.3 研究流程..........................4
第二章 文獻探討...........................6
2.1 計數管制圖的改變點類型.................6
2.2 計數管制圖的類型......................8
2.3 二項分配之計數管制圖的改變點估計方法....13
2.4 模糊統計集群法........................15
2.4.1 隸屬函數(Membership Function)......16
2.4.2 目標函數(Objective Function).......16
2.5 本章總結.............................17
第三章 研究方法...........................18
3.1 研究假設.............................20
3.2 資料模擬.............................21
3.2.1 階梯式改變資料模擬..................21
3.2.2 線性偏移資料模擬....................24
3.3 p管制圖之管制界限.....................28
3.4 隸屬函數.............................29
3.4.1 階梯式與線性偏移下p管制圖之隸屬函數...29
3.5 p管制圖之目標函數.....................30
3.6 績效評比.............................31
3.7 斜率判定係數法........................32
3.8 建立斜率判定係數法準則.................33
3.8.1 斜率判定係數法模擬結果...............33
3.8.2 使用斜率判定係數準則之分類正確率......43
3.9 模糊統計集群法之流程概述...............52
第四章 模擬結果與實例驗證..................54
4.1 製程為階梯式改變......................54
4.2 製程為線性偏移........................59
4.3 實例驗證.............................64
第五章 結論與未來方向.....................67
5.1 結論.................................67
5.2 未來方向.............................68
參考文獻..................................69


Alaeddini, A., Ghazanfari, M., & Nayeri, M. A. (2009). A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Information Sciences, 179(11), 1769-1784. doi:10.1016/j.ins.2009.01.019
Amiri, A., & Allahyari, S. (2012). Change point estimation methods for control chart postsignal diagnostics: a literature review. Quality and Reliability Engineering International, 28(7), 673-685. doi:10.1002/qre.1266
Amiri, A., & Khosravi, R. (2012). Estimating the change point of the cumulative count of a conforming control chart under a drift. Scientia Iranica, 19(3), 856-861. doi:10.1016/j.scient.2011.12.015
Amiri, A., & Khosravi, R. (2013). Identifying time of a monotonic change in the fraction nonconforming of a high-quality process. The International Journal of Advanced Manufacturing Technology, 68(1-4), 547-555. doi:10.1007/s00170-013-4776-5
Assareh, H., Noorossana, R., & Mengersen, K. L. (2013). Bayesian change point estimation in Poisson-based control charts. Journal of Industrial Engineering International, 9(1), 32. doi:10.1186/2251-712X-9-32
Hosseini, R., Amirzadeh, V., Yaghoobi, M. A., & Mirzaie, H. (2014). Approximating the step change point of the process fraction nonconforming using genetic algorithm to optimize the likelihood function. Journal of Industrial and Systems Engineering, 7(1), 118-128.
Kazemi, M., Kazemi, K., Yaghoobi, M., & Bazargan, H. (2016). A hybrid method for estimating the process change point using support vector machine and fuzzy statistical clustering. Applied Soft Computing, 40, 507-516.
Kazemi, M. S., Bazargan, H., & Yaghoobi, M. A. (2014). Estimating the drift time for processes subject to linear trend disturbance using fuzzy statistical clustering. International Journal of Production Research, 52(11), 3317-3330. doi:10.1080/00207543.2013.872312
Maleki, M., Amiri, A., & Mousavi, S. (2015). Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation. Journal of Industrial Engineering International, 11(4), 505-515. doi:10.1007/s40092-015-0117-7
Niaki, S., & Khedmati, M. (2012). Detecting and estimating the time of a step-change in multivariate Poisson processes. Scientia Iranica, 19(3), 862-871. doi:10.1016/j.scient.2011.11.044
Niaki, S. T. A., Afroozan, S., & Soleimani, P. (2013). MLE of the step-change point in bivariate binomial processes. Journal of Industrial and Systems Engineering, 7(1), 1-10.
Niaki, S. T. A., & Khedmati, M. (2013). Identifying the change time of multivariate binomial processes for step changes and drifts. Journal of Industrial Engineering International, 9(1), 1-11. doi:10.1186/2251-712X-9-3
Niaki, S. T. A., & Khedmati, M. (2014). Change point estimation of high-yield processes experiencing monotonic disturbances. Computers & Industrial Engineering, 67, 82-92. doi:10.1016/j.cie.2013.11.003
Niaki, S. T. A., & Khedmati, M. (2014). Monotonic change-point estimation of multivariate Poisson processes using a multi-attribute control chart and MLE. International journal of production research, 52(10), 2954-2982. doi:10.1080/00207543.2013.857797
Niaki, S. T. A., & Khedmati, M. (2014). Step change-point estimation of multivariate binomial processes. International Journal of Quality & Reliability Management, 31(5), 566-587. doi:10.1108/IJQRM-07-2012-0101
Nishina, K. (1992). A comparison of control charts from the viewpoint of change‐point estimation. Quality and Reliability Engineering International, 8(6), 537-541. doi:10.1002/qre.4680080605
Noorossana, R., Saghaei, A., Paynabar, K., & Abdi, S. (2009). Identifying the period of a step change in high-yield processes. Quality and Reliability Engineering International, 25(7), 875-883. doi:10.1002/qre.1007
Page, E. (1954). Continuous inspection schemes. Biometrika, 100-115. doi:10.1093/biomet/41.1-2.100
Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2006). Estimating the change point of a poisson rate parameter with a linear trend disturbance. Quality and Reliability Engineering International, 22(4), 371-384. doi:10.1002/qre.715
Perry, M. B., & Pignatiello Jr, J. J. (2005). Estimation of the change point of the process fraction nonconforming in SPC applications. International Journal of Reliability, Quality and Safety Engineering, 12(02), 95-110. doi:10.1142/S0218539305001719
Perry, M. B., & Pignatiello Jr, J. J. (2011). Estimating the time of step change with poisson CUSUM and EWMA control charts. International journal of production research, 49(10), 2857-2871. doi:10.1080/00207541003690082
Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2007a). Estimating the change point of the process fraction non‐conforming with a monotonic change disturbance in SPC. Quality and Reliability Engineering International, 23(3), 327-339. doi:10.1142/S0218539305001719
Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R. (2007b). Change point estimation for monotonically changing poisson rates in SPC. International Journal of Production Research, 45(8), 1791-1813. doi:10.1080/00207540600622449
Pignatiello Jr, J. J., & Samuel, T. R. (2001). Identifying the time of a step-change in the process fraction nonconforming. Quality Engineering, 13(3), 357-365. doi:10.1080/08982110108918663
Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A. (1998). Identifying the time of a step change in a normal process variance. Quality Engineering, 10(3), 529-538. doi:10.1080/08982119808919167
Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A. (1998a). Identifying the time of a step change with Xbar control charts. Quality Engineering, 10(3), 521-527. doi:10.1080/08982119808919166
Samuel, T. R., & Pignatjello Jr, J. J. (1998b). Identifying the time of a change in a poisson rate parameter. Quality Engineering, 10(4), 673-681. doi:10.1080/08982119808919185
Shao, Y. E., & Lin, K.-S. (2015). Change point determination for an attribute process using an artificial neural network-based approach. Discrete Dynamics in Nature and Society, 2015. doi:10.1155/2015/892740
Takeshi Emura, Y.-T. H. (2016). A decision theoretic approach to change point estimation for binomial CUSUM control charts. Sequential Analysis, 35(2). doi:0.1080/07474946.2016.1165543
Woodall, W. H. (1997). Control charts based on attribute data: bibliography and review. Journal of quality technology, 29(2), 172-183.
Zamba, K., & Hawkins, D. M. (2006). A multivariate change-point model for statistical process control. Technometrics, 48(4), 539-549. doi:10.1198/004017006000000291
Zandi, F., Niaki, S., Nayeri, M., & Fathi, M. (2011). Change-point estimation of the process fraction non-conforming with a linear trend in statistical process control. International Journal of Computer Integrated Manufacturing, 24(10), 939-947. doi:10.1080/0951192X.2011.608720
Zarandi, M. H. F., & Alaeddini, A. (2010). A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts. Information Sciences, 180(16), 3033-3044.

電子全文 電子全文(網際網路公開日期:20211231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔