|
Boxerbaum, A. S., Horchler, A. D., Shaw, K. M., Chiel, H. J., & Quinn, R. D. (2011, 25-30 Sept. 2011). A controller for continuous wave peristaltic locomotion. Paper presented at the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Chen, J.-C. (1998). Problem Solving with a Perpetual Evolutionary Learning Architecture. Applied Intelligence, 8(1), 53-71. doi: 10.1023/A:1008220631455
Chen, J.-C., & Conrad, M. (1994a). Learning synergy in a multilevel neuronal architecture. Biosystems, 32(3), 111-142. doi: 10.1016/0303-2647(94)90036-1
Chen, J.-C., & Conrad, M. (1994b). A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning. Physica D: Nonlinear Phenomena, 75(1-3), 417-437. doi: 10.1016/0167-2789(94)90295-X
Chen, L., Ma, S., Wang, Y., Li, B., & Duan, D. (2007). Design and modelling of a snake robot in traveling wave locomotion. Mechanism and Machine Theory, 42(12), 1632-1642. doi: http://dx.doi.org/10.1016/j.mechmachtheory.2006.12.003
Daltorio, K. A., Horchler, A. D., Shaw, K. M., Chiel, H. J., & Quinn, R. D. (2013). Biomimetic and Biohybrid Systems (N. F. Lepora, A. Mura, H. G. Krapp, P. F. M. J. Verschure & T. J. Prescott Eds.): Springer Berlin Heidelberg.
Gray, J. (1946). The mechanism of locomotion in snakes. Journal of experimental biology, 101-120
Hirose, S. (1993). Biologically Inspired Robots: Serpentile Locomotors and Manipulators: Oxford University Press.
Jayne, B. C. (1988). Muscular mechanisms of snake locomotion: an electromyographic study of the sidewinding and concertina modes of Crotalus cerastes, Nerodia fasciata and Elaphe obsoleta. Journal of experimental biology, 140, 1-33.
Liljebäck, P., K.Y.Pettersen, Stavdahl, Ø., & Gravdahl, J. T. (2012). A review on modelling, implementation, and control of snake robots. Robotics and Autonomous Systems, 60, 29-40.
Mahjoob, M. D. M. J. (2009). A modified serpenoid equation for snake robots. Paper presented at the International Conference on Robotics and Biomimetics, Bangkok.
Mann, E. E., Manna, D., Mettetal, M. R., May, R. M., Dannemiller, E. M., Chung, K. K., . . . Reddy, S. T. (2014). Surface micropattern limits bacterial contamination. Antimicrobial Resistance and Infection Control, 3. doi: 10.1186/2047-2994-3-28
Ostrowski, J., & Burdick, J. (1996, 22-28 Apr 1996). Gait kinematics for a serpentine robot. Paper presented at the Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on.
Sato, M., Fukaya, M., & Iwasaki, T. (2002). Serpentine locomotion with robotic snakes. IEEE Control Systems, 22(1), 64-81. doi: 10.1109/37.980248
Shan, Y., & Koren, Y. (1993). Design and motion planning of a mechanical snake. IEEE Transactions on Systems, Man, and Cybernetics, 23(4), 1091-1100. doi: 10.1109/21.247890
Shugen, M., Araya, H., & Li, L. (2001, 2001). Development of a creeping snake-robot. Paper presented at the Computational Intelligence in Robotics and Automation, 2001. Proceedings 2001 IEEE International Symposium on.
Wu, X., & Ma, S. (2010). CPG-based control of serpentine locomotion of a snake-like robot. Mechatronics, 20(2), 326-334.
張斐章, & 張麗秋. (2010). 類神經網路導論. 台中市: 滄海書局.
|