[1]石峰,應用現地微振量測進行斜張橋之沖刷評估,國立雲林科技大學營建工程研究所碩士論文,吳文華與陳建州教授指導,2011。[2]吳文華、陳建州、石峰,應用現地微振量測進行高屏溪斜張橋之沖刷評估與監測,土木水利,第38卷,第3期,第42-51頁,2011。[3]W.-H. Wu, C.-C. Chen, F. Shih, and S.-W. Wang, Scour evaluation of cable - stayed bridges based on ambient vibration measurements, Proceedings of International Workshop on Structural Health Monitoring and Damage Assessment, Taipei, Taiwan, pp. XI 1-20, 2011.
[4]W.-H. Wu, C.-C. Chen, F. Shih, and S.-W. Wang, Scour evaluation for foundation of a cable-stay bridge based on ambient vibration measurements of superstructure, NDT&E International, Vol. 66, pp. 16-27, 2014.
[5]R.-R. Zhang, R. King, L. Olson, and Y.-L. Xu, Dynamic response of the Trinity River Relief Bridge to controlled pile damage modeling and experimental data analysis comparing Fourier and Hilbert-Huang techniques, Journal of Sound and Vibration, Vol. 285, No.4-5, pp. 1049-1070, 2005.
[6]S. Dey and A.K. Barbhuiya, Velocity and turbulence in a scour hole at a vertical-wall abutment, Flow Measurement and Instrumentation, Vol. 17, No.1, pp. 13-21, 2006.
[7]R. Uzuoka, M. Cubrinovski, H. Sugita, M. Sato, K. Tokimatsu, N. Sento, M. Kazama, F. Zhang, A. Yashima, and F. Oka, Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamics analysis: sharking in the direction perpendicular to ground flow, Soil Dynamics and Earthquake Engineering, Vol. 28, No. 6, pp. 436-452, 2008.
[8]L. Deng and C.-S. Cai, Bridge scour: prediction, modeling, monitoring, and countermeasures-review, Practice Periodical on Structural Design and Construction, Vol. 15, No. 2, pp. 125-134 , 2010.
[9]S. Foti and D. Sabia, Influence of foundation scour on the dynamic response of an existing bridge, Journal of Bridge Engineering, ASCE, Vol. 16, No. 2, pp. 295-304, 2011.
[10]T.-K. Lin, Y.-P. Wang, M.-C. Huang, and C.-A.Tsai, Bridge scour evaluation based on ambient vibration,Journal of Vibroengineering, Vol. 14, No. 3, pp. 1113-1121, 2012.
[11]T.-K. Lin, R.-T. Wu, K.-C. Chang, and S.-C. Yu,Evaluation of bridge instability caused by dynamic scour based on fractal theory, Smart Materials and Structures, Vol. 22, No. 7, 075003, 2013.
[12]X. Kong, C.-S. Cai, and S. Hou, Scour effect on a single pile and development of corresponding scourmonitoring methods, Smart Materials and Structures, Vol. 22, No. 5, 055011, 2013.
[13]L.J. Prendergast, D. Hester, K. Gavin, and J.J. O'Sullivan, An investigation of the changes in the natural frequency of a pile affected by scour, Journal of Sound and Vibration, Vol. 332, No. 25, pp. 6685-6702, 2013.
[14]A. Elsaid and R. Seracino, Rapid assessment of foundation scour using the dynamic features of bridge superstructure, Construction and Building Materials, Vol. 50, No. 1, pp. 42-49, 2014.
[15]Q.-W. Zhang, L.-C. Fan, and W.-C. Yuan, Traffic-induced variability in dynamic properties of cable-stayed bridge, Earthquake Engineering and Structural Dynamics, Vol. 31, No. 11, pp. 2015-2021, 2002.
[16]Y.-Q. Ni, X.-G. Hua, K.-Q. Fan, and J.-M. Ko, Correlating modal properties with temperature using long-term monitoring data and support vector machine technique, Engineering Structures, Vol. 27, No. 12, pp. 1762-1773, 2005.
[17]J.H.G. Macdonald and W.E. Daniell, Variation of modal parameters of a cable-stayed bridge identified from ambient vibration measurements and FE modelling, Engineering Structures, Vol. 27, No. 13, pp. 1916-1930, 2005.
[18]X.-G. Hua, Y.-Q. Ni, J.-M. Ko, and K.-Y. Wong, Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique, Journal of Computing in Civil Engineering, Vol. 21, No. 2, pp. 122-135, 2007.
[19]Y.-Q. Ni, J.-M. Ko, X.-G. Hua and H.-F. Zhou, Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions, Smart Structures and Systems, Vol. 3, No. 3, pp. 341-356, 2007.
[20]李愛群、丁幼亮、費慶國、繆長青,潤揚大橋斜張橋模態頻率識別的環境變異性,東南大學學報(自然科學版),第2期,第245-250頁,2007。
[21]閔志準,孫利民,淡丹輝,影響斜拉橋模態參數變化的環境因素分析,振動與沖刷,第28卷,第10期,第99-105頁,2009。
[22]C.-H. Chen, Y.-Y. Lin, and S.-C. Yang, Variability of dynamic characteristics of a cable-stayed bridge subject to traffic-induced vibrations, Journal of Chung Cheng Institute of Technology, Vol. 39, No. 2, pp. 47-56, 2010.
[23]孫利民、周毅、謝大圻、大跨度斜張橋模態頻率的環境影響因素研究,重慶交通大學學報(自然科學版),第32卷,第6期,第1106-1110頁,2013。
[24]L. Sun, Y. Zhou, and D. Xie, Temperature effects on modal frequencies of long-span cable-stayed bridges, Proceedings of 4th International Symposium on Life-Cycle Civil Engineering, Tokyo, Japan, pp. 1091-1097, 2014.
[25]孫利民、周毅,謝大圻,環境因素對斜拉橋模態頻率影響的周期特性,同濟大學學報(自然科學版),第43卷,第10期,第1454-1462頁,2015。
[26]E. Cross, K. Worden, K.Y. Koo, and J.M.W. Brownjohn, Modelling environmental effects on the dynamic characteristics of the Tamar suspension bridge, Proceedings of the 28th IMAC, Jacksonville, USA, Vol. 5, pp. 21-32, 2010.
[27]鄭揚、丁幼亮、李愛群,環境條件影響下懸索橋模態頻率變異性的定量評價,振態與衝擊,第30卷,第8期,第230-236頁,2011。
[28]R. Westgate, Environmental Effects on a Suspension Bridge’s Performance, PhD Thesis, University of Sheffield, UK, 2012.
[29]N.M. Apaydin, Y. Kaya, E. Safak, and H. Alcik, Vibration characteristics of a suspension bridge under traffic and no traffic conditions, Earthquake Engineering and Structural Dynamics, Vol. 41, No. 12, pp. 1717-1723, 2012.
[30]I. Laory, T.N. Trinh, I.F.C. Smith, and J.M.W. Brownjohn, Methodologies for predicting natural frequency variation of a suspension bridge, Engineering Structures, Vol. 80, pp. 211-221, 2014.
[31]R. Westgate, K.Y. Koo, and J.M.W. Brownjohn, Effect of vehicular loading on suspension bridge dynamic properties, Structure and Infrastructure Engineering, Vol. 11, No. 2, pp. 129-144, 2015.
[32]陳明徹,應用隨機子空間系統識別方法探討橋梁結構健康診斷,台灣大學土木工程學研究所碩士論文,羅俊雄教授指導,2012。[33]J.A. Lopez and M.A. Astiz, An experimental analysis of the evolution of dynamic parameters of a long-span metal arch bridge, Structural Engineering International, Vol. 24, No. 1, pp. 8-19, 2014.
[34]焦志欽、胡利平、韓大建,溫度對橋梁動力特性的影響研究,科學技術與工程,第10卷,第31期,第7685-7689頁,2010。
[35]L. Wang, J. Hou, and J. Ou, Temperature effect on modal frequencies for a rigid continuous bridge based on long term monitoring, Proceedings of SPIE - The International Society for Optical Engineering, San Diego, USA, Vol. 7983, 2011.
[36]王蕾,大跨鋼構-連續梁橋結構性能的運營環境影響與規律分析,哈爾濱工業大學博士論文,歐進萍教授指導,2013。
[37]李嘉维、夏樟華、余印根、林友勤,基於長期動力特性監測數據的大跨度橋梁安全性能評估,福州大學學報,第42卷,第4期,第596-605頁,2014。
[38]余印根,環境溫度對連續剛構橋模態頻率的影響,振動、測試與診斷,第34卷,第1期,第69-76頁,2014。
[39]N.A. Londono, D.T. Lau, and M. Rahman, Characteristics of dynamic monitoring data and observed behaviour of the Confederation Bridge due to operational load variations, Canadian Journal of Civil Engineering, Vol. 40, No. 5, pp. 393-409, 2013.
[40]厲開紋,運用現地監測與結構模擬評估橋梁基礎之沖刷程度與健康狀態,台灣大學土木工程學研究所碩士論文,陳正興教授指導,2012。[41]林奉廷,橋梁基礎受沖刷之動態行為研究-以新發大橋為例,成功大學土木工程學系碩士論文,陳景文教授指導,2013。[42]王勝威、吳文華、陳建州、賴國龍,以隨機子空間識別法進行斜張鋼纜之各振態參數識別,第四屆海峽兩岸四地高校師生土木工程監測與控制研討會論文集,呼和浩特,中國,2013。
[43]W.-H. Wu, C.-C. Chen, S.-W. Wang, and G. Lai, Modal parameter determination of stay cable with an improved algorithm based on stochastic subspace identification, Proceedings of 7th European Workshop on Structural Health Monitoring, Nantes, France, pp. 2036-2043, 2014.
[44]W.-H.Wu, S.-W. Wang, C.-C. Chen, and G. Lai, Application of stochastic subspace identification for stay cables with an alternative stabilization diagram and hierarchical sifting process, Structural Control and Health Monitoring, in press.
[45]W.-H. Wu, S.-W. Wang, C.-C. Chen, and G. Lai, Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification, Smart Structures and Systems, in press.
[46]W.-H. Wu, S.-W. Wang, C.-C. Chen, and G. Lai, Appropriate selection of time lag parameter in applications of stochastic subspace identification for several types of civil structures, Mechanical Systems and Signal Processing, in review.
[47]周哲瑋,應用於斜張鋼纜索力受溫度影響分析之快速收斂經驗模態分解法,國立雲林科技大學營建工程研究所碩士論文,吳文華與陳建州教授指導,2015。[48]周哲瑋、陳建州、吳文華,應用於斜拉索力受溫度影響分析之快速收斂經驗模態分解法,第四屆海峽兩岸四地高校師生土木工程監測與控制研討會論文集,廈門,中國,2015。
[49]W.-H. Wu, C.-C. Chen, J.-W. Jhou, and G. Lai, A rapidly convergent empirical mode decomposition method for applications in analyzing the environmental temperature effects on stay cable force, Digital Signal Processing, in review.
[50]交通部台灣區國道新建工程局,高屏溪橋,2001。
[51]中華民國交通部台灣區國道新建局第二高速公路後續計畫,燕巢至九如段高屏溪河川工程STA. 386+032.81 TO STA. 388+672.70,竣工圖,2000。
[52]B. Peeters, System Identification and Damage Detection in Civil Engineering, Ph.D. Thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Belgium, 2000.
[53]B. Peeters, G. De Roeck, T. Pollet, and L. Schueremans, Stochastic subspace techniques applied to parameter identification of civil engineering structure, Proceedings of the International Conference MV2 on New Advances in Modal Synthesis of Large Structures, Non-Linear, Damped and Non-Deterministic Cases, pp. 151-162, 1995.
[54]P. Frank Pai, Nonlinear Vibration Characterization by Signal Decomposition, Journal of Sound and Vibration, Vol. 307, No. 3-5, pp. 527-544, 2007.
[55]Y. Dong, Y. Li, M. Xiao, and M. Lai, Analysis of earthquake ground motions using an improved Hilbert-Huang transform, Soil Dynamics and Earthquake Engineering, Vol. 28, No. 1, pp. 7-19, 2008.
[56]G. Kerschen, A.F. Vakakis, Y.S. Lee, D.M. McFarland, and L.A. Bergman, Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics, Journal of Vibration and Control, Vol. 14, No. 1-2, pp. 77-105, 2008.
[57]Q. Xie, B. Xuan, S. Peng, J. Li, W. Xu, and H. Han, Bandwidth empirical mode decomposition and its application, International Journal of Wavelets, Multiresolution and Information Processing, Vol. 6, No. 6, pp. 777-798, 2008.
[58]V. Vatchev and R. Sharpley, Decomposition of functions into pairs of intrinsic mode functions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 464, No. 2097, pp. 2265-2280, 2008.
[59]J. Xun and S. Yan, A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure, Mechanical Systems and Signal Processing, Vol. 22, No. 7, pp. 1705-1723, 2008.
[60]N.-E. Huang, Z. Shen, S.-R. Long, M.-C. Wu, H.-H. Zheng, Q. Yeh, N.-C. Tung, and H.-H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 454, pp. 903-995, 1998.
[61]W. Huang, Z. Shen, N.-E. Huang, and Y.-C. Fung, Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to step hypoxia, Proceedings of the National Academy of Science USA, Vol. 95, pp. 12766-12771, 1999.
[62]N.-E. Huang, Z. Shen, and S.-R. Long, A new view of nonlinear water waves: the Hilbert spectrum, Annual Reviews of Fluid Mechanics, Vol. 31, pp. 417-457, 1999.
[63]W. Huang, Z. Shen, N.-E. Huang, and Y.-C. Fung, Nonlinear indicial response of complex nonstationary oscillations as pulmonary hypertension responding to step hypoxia, Proceedings of the National Academy of Science USA, Vol. 96, pp. 1834-1839, 1999.
[64]C.-C. Chen, W.-H. Wu, and C.-Y. Liu, Decomposed Components of the Effective Temperature History and Their Correlation with the Variation of Stay Cable Force, Proceedings of 7th European Workshop on Structural Health Monitoring, Nantes, France, 2014.
[65]http://tisvcloud.freeway.gov.tw/history/TDCS/