(3.236.214.19) 您好!臺灣時間:2021/05/06 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:詹宜燁
研究生(外文):Yi-Yeh Chan
論文名稱:電化學/過氧硫酸鹽/Co2+應用於廢水中硝基酚之降解
論文名稱(外文):Degradation of Nitrophenol in wastewater by electrochemical/ peroxymonosulfate /Co2+
指導教授:陳文星陳文星引用關係
指導教授(外文):Wen-Shing Chen
口試委員:王怡仁洪正宗
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:對硝基酚電化學氧化法硫酸根自由基鈷離子
外文關鍵詞:P-nitrophenolelectrochemicalsulfate radicalscobalt ion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
對硝基酚在工業、農業、醫學,甚至是國防軍事上扮演著重要的角色,在工業上可以製成染料,皮革保養品;在農業上可以製成殺蟲劑;在醫學上可以做成感冒藥;軍事上則是可以製成炸藥,對人類世界的貢獻實在是不容小覷。
因工業上可能存在許多不良業者或者粗心業者,可能會將廢水排放到河川、湖泊、土壤中,雖然不是被列管為有毒物質,但即使是低濃度,造成累積性後,必然也會對大自然造成危害,因此將環境中的對硝基酚去除,這也是不可忽略的課題。高級氧化程序(Advanced Oxidation Process,AOPs)方法常常被使用來處理廢水,此項技術是藉由產生高氧化力的氫氧自由基(OH∙),因有較高的氧化電位,所以能夠氧化大部分的有機化合物。近幾年來,硫酸根自由基(SO_4^-∙)也漸漸受到關注,在未來尚可漸漸替代OH∙。
本研究是利用電化學結合過氧硫酸鹽及硫酸亞鈷七水化合物降解廢水中對硝基酚,在不同參數變化下進行電化學氧化實驗,例如:溫度變化、初始pH值、電壓強度變化、過氧硫酸鹽濃度變化和鈷離子濃度變化。實驗研究顯示出最適條件是溫度318K、初始pH=7、電壓3volt、PMS=0.136M、Co2+=0.2mM,反應10min後,有機物氧化降解效果98%。

P-nitrophenol(PNP) is very important in the world. PNP can be used in industry, medicine, pesticide and military. PNP can be made into many articles, such as dyes, pesticide, explosives.
Advanced oxidation processes (AOPs) provide a very promising technology because AOPs can generate free radicals with higher oxidation potential such as OH∙. Based on the generation of reactive species (hydroxyl radicals,OH∙) have a higher oxidation potential . Hydroxy radicals would be able to oxidize almost organic compounds .
Recently, sulfate radicals (SO_4^-∙) have been attracting extensive interest and suggested to be a substitution to the hydroxyl radicals .
This research aims to degrade p-nitrophenol in wastewater by using electro -activated peroxymonosulfate and Co2+. The purpose of the study is to investigate the electrolysis behavior of P-nitrophenol under different condition.
After the reaction time of 10minutes,the results showed reaction under these conditions(reaction temperature 318K , pH value of 7, electrolysis potential 3 volt, potassium peroxymonopersulfate dosage under 0.136M and Cobalt ion dosage under 0.2mM) can degrade PNP up to 98%.

目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 绪 論 1
1-1 研究動機 1
1-2 研究目的與方法 1
第二章 文獻回顧 2
2-1對硝基酚的特性 2
2-1-1對硝基酚介紹 2
2-1-2對硝基酚製備方式 3
2-1-3對硝基酚的毒性 3
2-2 電解氧化法 5
2-2-1電解原理 6
2-2-2 法拉第定律 16
2-2-3金屬腐蝕 17
2-2-4影響電流效率之因素 19
2-3電解氧化反應之途徑 23
2-3-1直接氧化(direct oxidation) 26
2-3-2間接氧化(indirect oxidation) 29
2-4 Peroxymonosulfate (PMS) 35
2-4-1 主要物理化學性質 35
2-4-2 過硫酸鹽基本反應機構 40
2-4-3 過硫酸鹽之金屬離子催化反應 42
2-4-4 過硫酸鹽之金屬氧化物催化反應 43
第三章 實驗步驟及分析方法 44
3-1 實驗材料 44
3-1-1 實驗藥品 44
3-1-2 實驗設備 45
3-1-3 實驗分析儀器 46
3-1-4 實驗裝置 46
3-1-5 電解反應系統 47
3-2 實驗架構 47
3-2-1 電化學/過氧硫酸鹽/過渡金屬化合物氧化程序 47
3-2-2 電化學/過氧硫酸鹽/硫酸亞鈷七水化合物氧化程序 48
3-2-3自由基清除者驗證實驗 49
3-2-4硫酸根自由基驗證實驗 49
3-3 實驗原理分析 50
3-4實驗步驟 51
3-4-1電化學/過氧硫酸鹽/過渡金屬化合物降解對硝基酚廢水溶液 51
3-4-2電化學/過氧硫酸鹽/硫酸亞鈷七水化合物降解對硝基酚廢水溶液 52
3-4-3自由基清除者驗證實驗 54
3-4-4 硫酸根自由基驗證實驗 55
第四章 結果與討論 57
4-1電化學/過氧硫酸鹽/過渡金屬化合物降解對硝基酚水溶液 57
4-2電化學/過氧硫酸鹽/硫酸亞鈷七水化合物氧化程序 59
4-2-1溫度效應 59
4-2-2 初始pH 效應 61
4-2-3電壓效應 62
4-2-4過氧硫酸鹽濃度效應 64
4-2-5硫酸亞鈷七水化合物濃度效應 66
4-3自由基清除者驗證實驗 67
4-4電化學/過氧硫酸鹽/硫酸亞鈷七水化合物/乙醇程序驗證硫酸根基實驗 68
4-4-1溫度效應 69
4-4-2過氧硫酸鹽濃度效應 70
4-4-3硫酸亞鈷七水化合物濃度效應 71
第五章結論 72
第六章 參考文獻 73


表目錄
表2-1 對硝基酚的基本特性 4
表2-2 Standard Potential for some Electron Transfer Reaction 15
表2-3 各種陰極材質放出氫的塔弗方程式參數表 20
表2-4 有機物氧化反應反應電位範圍 24
表2-5 常見之氧化媒子種類及其氧化還原電位 30
表2-6高硫酸鹽於水溶液中降解方程式 33
表2-7 過硫酸氫鉀複合鹽基本特性 37
表2-8 過硫酸氫鉀複合鹽相關行業應用 38
表2-9 五種氧化劑優缺點彙整 39
表2-9過硫酸鹽於水溶液中降解方程式 41
表2-10 不同金屬離子條件下氧化降解2,4-DCP之效率 43
表3-1電化學/過氧硫酸鹽/過渡金屬化合物之操作條件 51
表3-2 電化學/過氧硫酸鹽/硫酸亞鈷七水化合物之影響因子與操作條件 53
表3-3電化學/過氧硫酸鹽/硫酸亞鈷七水化合物/自由基清除者之操作條件 54
表3-4電化學/過氧硫酸鹽/硫酸亞鈷七水化合物/硫酸根自由基之操作條件 56

圖目錄
圖2-1對硝基酚模型 2
圖2-2 基本電解示意圖 7
圖2-3 Schematic Representation of a Tafel Plot 11
圖2-4 Schematic Presentation of the Relationship between Concentration Over potential and Current. 13
圖2-5 有機物在陽極表面氧化破壞 28
圖2-6 Schematic Overpotential-log j Curves for the Evolution of Oxygen on Various Oxides from Alkaline Soultion. 28
圖2-7有機物間接氧化反應途徑 29
圖2-8 不同PH值高硫酸鹽對NB的影響 32
圖2-9 KHSO5結構圖 35
圖2-10 過硫酸氫鉀複合鹽與PH之影響 36
圖3-1 電解實驗裝置圖 46
圖4-1 不同的過渡金屬化合物下電解有機物氧化降解與反應時間關係 57
圖4-2 不同溫度下電解有機物氧化降解與反應時間關係 60
圖4-3 不同初始pH值下電解有機物氧化降解與反應時間關係 61
圖4-4 不同電壓下電解有機物氧化降解與反應時間關係 63
圖4-5,反應相同時間下,不同電位的性價比 64
圖4-6 不同過氧硫酸鹽濃度下電解有機物氧化降解與反應時間關係 64
圖4-7 不同硫酸亞鈷濃度下電解有機物氧化降解與反應時間關係 67
圖4-8 自由基清除者之影響 67
圖4-9 溫度效應之電化學/過氧硫酸鹽/硫酸亞鈷七水化合物/乙醇程序 69
圖4-10 過氧硫酸鹽濃度效應之電化學/過氧硫酸鹽/硫酸亞鈷/乙醇程序 70
圖4-11硫酸亞鈷濃度效應之電化學/過氧硫酸鹽/硫酸亞鈷/乙醇程序 71


[1]S. Yi, W.-Q. Zhuang, B. Wu, S. T.-L. Tay, and J.-H. Tay, "Biodegradation of p-Nitrophenol by Aerobic Granules in a Sequencing Batch Reactor," Environmental Science & Technology, vol. 40, no. 7, pp. 2396-2401, 2006/04/01 2006.
[2]王清松,《電化學氧化處理養殖海水之試驗研究》,國立中興大學生物產業機電工程所,2003.
[3]P. M. Monk, Fundamentals of electro-analytical chemistry. John Wiley & Sons, 2008.
[4]萬其超,《電化學之原理與應用》,徐氏基金會,1983.
[5]張裕祺,《臺灣的科學傳播:現在和未來─金屬腐蝕的科學》,科學月刊03月號(531期),2014.
[6]田福助,《電化學: 基本原理與應用》,五洲,1994.
[7]邵聖齊,《電化學氧化法結合過硫酸鹽氧化程序應用於廢水中苯胺之去除》,國立雲林科技大學化學工程與材料工程系碩士班,2015.
[8]林葆喜,《DSA ─ 形狀安定陽極簡介》,工業材料, vol. 160,pp. 159-161,2000.
[9]J. Bockris, Electrochemistry of cleaner environments. Springer Science & Business Media, 2013.
[10]K. Scott, "Metal recovery using a moving-bed electrode," Journal of Applied Electrochemistry, vol. 11, no. 3, pp. 339-346, 1981.
[11]N. Parthasaradhy, "Practical Electroplating Handbook.(Retroactive Coverage)," Prentice-Hall, Inc.(USA), p. 1444, 1989.
[12]R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas, and F. Renoldi, "Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes," Environmental science & technology, vol. 32, no. 22, pp. 3570-3573, 1998.
[13]D. K. Kyriacou, Basics of electroorganic synthesis. John Wiley & Sons, 1981.
[14]D. Gandini, E. Mahé, P. A. Michaud, W. Haenni, A. Perret, and C.
Comninellis, "Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment," Journal of Applied Electrochemistry, vol. 30, no. 12, pp. 1345-1350, 2000.
[15]C. Comninellis and C. Pulgarin, "Electrochemical oxidation of phenol for wastewater treatment using SnO 2, anodes," Journal of applied electrochemistry, vol. 23, no. 2, pp. 108-112, 1993.
[16]C. Tennakoon, R. Bhardwaji, and J. O. M. Bockris, "Electrochemical treatment of human wastes in a packed bed reactor," Journal of Applied Electrochemistry, vol. 26, no. 1, pp. 18-29, 1996.
[17]K. Rajeshwar and J. G. Ibanez, Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement. Academic press, 1997.
[18]S. K. Johnson, L. L. Houk, J. Feng, R. Houk, and D. C. Johnson, "Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry," Environmental science & technology, vol. 33, no. 15, pp. 2638-2644, 1999.
[19]陳宜琳《以陰陽極組對電解系統進行有機物氧化之研究》,國立成功大學化學工程學系博士班,1996.
[20]W.-S. Chen and S.-Z. Lin, "Destruction of nitrotoluenes in wastewater by electro-Fenton oxidation," Journal of hazardous materials, vol. 168, no. 2, pp. 1562-1568, 2009.
[21]R. L. Siegrist, M. A. Urynowicz, O. R. West, M. L. Crimi, and K. S. Lowe, Principles and practices of in situ chemical oxidation using permanganate. Battelle Press Columbus, OH, 2001.
[22]W.-S. Chen and C.-P. Huang, "Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound," Chemical Engineering Journal, vol. 266, pp. 279-288, 2015.
[23]W.-S. Chen, Y.-C. Jhou, and C.-P. Huang, "Mineralization of dinitrotoluenes in industrial wastewater by electro-activated persulfate oxidation," Chemical Engineering Journal, vol. 252, pp. 166-172, 2014.
[24]C. Liang and H.-W. Su, "Identification of sulfate and hydroxyl radicals in thermally activated persulfate," Industrial & Engineering Chemistry Research, vol. 48, no. 11, pp. 5558-5562, 2009.
[25]M. Levi and E. Migliorini, "Sopra la scomposizione del persolfati," Gaz. Chim. Ital. B, vol. 36, pp. 599-619, 1906.
[26]L. Green and O. Masson, "CCXIX.—The dynamics of the decomposition of persulphuric acid and its salts in aqueous solution," Journal of the Chemical Society, Transactions, vol. 97, pp. 2083-2099, 1910.
[27]I. Kolthoff and I. Miller, "The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1," Journal of the American Chemical Society, vol. 73, no. 7, pp. 3055-3059, 1951.
[28]E. Hayon, A. Treinin, and J. Wilf, "Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5-radicals," Journal of the American Chemical Society, vol. 94, no. 1, pp. 47-57, 1972.
[29]Y. Wang and W. Chu, "Degradation of 2, 4, 5-trichlorophenoxyacetic acid by a novel Electro-Fe (II)/Oxone process using iron sheet as the sacrificial anode," Water research, vol. 45, no. 13, pp. 3883-3889, 2011.
[30]G. Zhou, H. Sun, S. Wang, H. M. Ang, and M. O. Tadé, "Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations," Separation and purification technology, vol. 80, no. 3, pp. 626-634, 2011.
[31]A. Rastogi, S. R. Al-Abed, and D. D. Dionysiou, "Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems," Applied Catalysis B: Environmental, vol. 85, no. 3, pp. 171-179, 2009.
[32]X.-R. Xu and X.-Z. Li, "Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion," Separation and purification technology, vol. 72, no. 1, pp. 105-111, 2010.
[33]J. De Laat and T. G. Le, "Kinetics and modeling of the Fe (III)/H2O2 system in the presence of sulfate in acidic aqueous solutions," Environmental science & technology, vol. 39, no. 6, pp. 1811-1818, 2005.
[34]《http://wenku.baidu.com/view/5b24050b79563c1ec5da71a4.html》,過硫酸鹽簡介."
[35]A. Kotronarou and M. R. Hoffmann, "Peroxymonosulfate: An alternative to hydrogen peroxide for the control of hydrogen sulfide," Research Journal of the Water Pollution Control Federation, pp. 965-970, 1991.
[36]E. A. Betterton and M. R. Hoffmann, "Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate," Environmental science & technology, vol. 24, no. 12, pp. 1819-1824, 1990.
[37]葉淑娟,《電化學氧化法結合過硫酸鹽氧化程序應用於廢水中酚的去除》,國立雲林科技大學化學工程與材料工程系碩士班,2014.
[38]P. Shukla, S. Wang, K. Singh, H. Ang, and M. O. Tadé, "Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate," Applied Catalysis B: Environmental, vol. 99, no. 1, pp. 163-169, 2010.
[39]P. Shukla, I. Fatimah, S. Wang, H. Ang, and M. O. Tadé, "Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater," Catalysis Today, vol. 157, no. 1, pp. 410-414, 2010.
[40]Y.-H. Guan, J. Ma, X.-C. Li, J.-Y. Fang, and L.-W. Chen, "Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system," Environmental science & technology, vol. 45, no. 21, pp. 9308-9314, 2011.
[41]B. C. Gilbert and J. K. Stell, "Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO 3–) with Ti III, Fe II, and α-oxygen-substituted radicals," Journal of the Chemical Society, Perkin Transactions 2, no. 8, pp. 1281-1288, 1990.
[42]B. C. Gilbert and J. K. Stell, "Mechanisms of peroxide decomposition: an electron paramagnetic resonance study of the reaction of the peroxomonosulphate anion (HOOSO–3) with Cu I. A marked contrast in behaviour with that of Ti III and Fe II," Journal of the Chemical Society, Faraday Transactions, vol. 86, no. 19, pp. 3261-3266, 1990.
[43]P. Maruthamuthu and P. Neta, "Radiolytic chain decomposition of peroxomonophosphoric and peroxomonosulfuric acids," The Journal of Physical Chemistry, vol. 81, no. 10, pp. 937-940, 1977.
[44]G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in aqueous solution," Journal of physical and chemical reference data, vol. 17, no. 2, pp. 513-886, 1988.
[45]P. Neta, R. E. Huie, and A. B. Ross, "Rate constants for reactions of inorganic radicals in aqueous solution," Journal of Physical and Chemical Reference Data, vol. 17, no. 3, pp. 1027-1284, 1988.
[46]R. E. Huie, C. L. Clifton, and N. Altstein, "A pulse radiolysis and flash photolysis study of the radicals SO-2, SO-3, SO-4 and SO-5," International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 33, no. 4, pp. 361-370, 1989.
[47]G. P. Anipsitakis and D. D. Dionysiou, "Radical generation by the interaction of transition metals with common oxidants," Environmental science & technology, vol. 38, no. 13, pp. 3705-3712, 2004.
[48]G. P. Anipsitakis, D. D. Dionysiou, and M. A. Gonzalez, "Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions," Environmental science & technology, vol. 40, no. 3, pp. 1000-1007, 2006.
[49]H. Lin, J. Wu, and H. Zhang, "Degradation of clofibric acid in aqueous solution by an EC/Fe 3+/PMS process," Chemical Engineering Journal, vol. 244, pp. 514-521, 2014.
[50]Y. Ji et al., "Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products," J Hazard Mater, vol. 313, pp. 229-37, Aug 05 2016.
[51]L. Hu, X. Yang, and S. Dang, "An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water," Applied Catalysis B: Environmental, vol. 102, no. 1, pp. 19-26, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔