跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮泰英
研究生(外文):Nguyen Thai Anh
論文名稱:含硫化染料模擬廢水之生物處理
論文名稱(外文):Biological Treatment of Synthetic DyeingWastewater Containing Sulfur Dyes
指導教授:莊瑞鑫,黃駿
指導教授(外文):Ruey-Shin Juang, Chun Huang
口試委員:王大銘呂幸江謝建德
口試委員(外文):Wang Da MingShing Jiang Jessie LueEric Hsieh
口試日期:2016-06-17
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:86
中文關鍵詞:生物處理含硫化染廢水生物處理含硫化染廢水
外文關鍵詞:BioremovalSulfur dyeActivated sludgeAcidithiobacillus thiooxidansChitosan beadsLaccaseBioremovalSulfur dyeActivated sludgeAcidithiobacillus thiooxidansChitosan beadsLaccase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的是測試乾燥酸預處理的活性污泥(DAAS),細菌菌株氧化硫硫桿菌(ATs),乾燥聚氨基葡糖珠(dCBs),漆酶是一種經濟的硫化染料生物處理方法的性能。實驗旨在測試不同的參數和上去除染料的初始染料濃度的影響。最大特異性攝取硫化染料上DAAS,dCBs這是不那麼高,分別為值11.19 mg g-1,45.5 mg g-1 30oC下。此生物處理方法的組合是一種很有前途的過程容忍較高濃度硫化染料和生物降解,提出作為後續處理除去殘留染料(250-350 mg L-1)。有效吸附接著Langmuir等溫用1428. 6 mg g-1的最大吸附容量; 87.5%,染料和顏色的91.4%被除去,分別為2000 mg L-1的初始染料濃度在30℃ 。此外,染料去除超過98.27 %和73.79%,吸附和酶硫藍15(SB15)的催化方法和硫棕色之間的GD(SBGD)用100mg L-1初始染料濃度,3.68 g L-1組合之後分別實現吸附劑劑量,2.24 U L-1的初始漆酶的活性,2.66×10 -4毫克蛋白固定化酶的量。此外,在從栓支承在載體漆酶的雲芝是戊二醛交聯脫乙酰殼多醣珠,高催化能力和固定化酶的重用可以與酶的低濃度下進行。通過增強漆酶活性,或在隨後的治療漆酶的濃度,顏色去除越高就可以實現。
The aim of the current study was testing the performance of an economical sulfur dyes bioremoval method using dried acid-pretreated activated sludge (DAAS),bacterial strain Acidithiobacillus thiooxidans(ATs), dried chitosan beads (dCBs), laccase. The batch experiments were designed to test the effects of different parameters and initial dye concentrations on dye removal. The maximum specific uptake values of sulfur dye on DAAS, dCBs which are not so high and were 11.19 mg g-1, 45.5 mg g-1at 30oC.However,the combination of bioremoval methods is a promising process to tolerate higher concentrations of sulfur dyes and biodegradation is proposed as a subsequent treatment stepfor the removal of the remaining dye (250-350 mg L-1). The effective biosorption on ATs followed the Langmuir isotherm with a maximum adsorption capacity of 1428.6mg g-1;87.5% and 91.4% of the dye and color were removed, respectively, with an initial dye concentration of 2000 mg L-1, at 30oC. Moreover, dye removal of over 98.27% and 73.79% were achieved after the combination between biosorption and enzyme catalytic process of sulfur blue 15 (SB15) and sulfur brown GD (SBGD) with 100 mg L-1 of initial dye concentration, 3.68 g L-1 of adsorbent dose, 2.24 U L-1 of initial laccase activity, 2.66 x 10-4 mg protein (g supports)-1 of the amount of immobilized laccase. Furthermore, on the support of the carrier laccase from Trametes versicolor which is the glutaraldehyde crosslinked chitosan beads, a high catalytic capacity and the reuse of immobilized enzyme can be performed with a low concentration of enzyme. By enhancing the laccase activity or the concentration of laccase in the subsequent treatment, the higher color removal can be achieved.
ACKNOWLEDGEMENTS 3
ABSTRACT 4
TABLE OF CONTENTS 5
LIST OF TABLES 7
LIST OF FIGURES 8
ABBREVIATIONS 10
CHAPTER 1. INTRODUCTION 11
1.1 Decolorization methods for industrial effluent 11
1.2 Treatment methods for dyes and wastewaters containing its 11
1.3 Sulfur dyes and treatment methods for its 16
1.4 Acidithiobacillus thiooxidans 16
1.5 Activated sludge 21
1.6 Chitosan 21
1.7 Laccase 22
1.8 Objectives 23
CHAPTER 2. MATERIALS AND METHODS 24
2.1 Chemicals 24
2.2 Microorganism and culture condition 24
2.2.1. Acidithiobacillus thiooxidans 24
2.2.2. Activated sludge 25
2.3. Measurement methods and instrumentation 25
2.3.1. Dye concentration measurement 25
2.3.2. Dye removal and adsorption yield 28
2.3.3. Color measurement 28
2.3.4. Biomass concentration measurement 28
2.3.5. Laccase activity assay 28
2.3.6. Quantity of laccase immobilized 29
2.3.7. Chemical structure analysis 29
2.3.8. Surface morphology analysis 29
2.3.9. Agitation and temperature controlling 30
2.4. Preparation of materials for experiments 30
2.4.1. Biosorbent 30
2.4.2. Carrier for laccase 31
2.5. Experiment methods 31
2.5.1. Biosorption experiments 31
2.5.2. Biodegradation experiments 35
2.5.2.1. Biodegradation of SB15 by A. thiooxidans 35
2.5.2.2. Laccase-catalyzed decolorization experiments 36
CHAPTER 3. RESULTS AND DISCUSSION 38
3.1. Biosorption of a Sulfur Dye from Aqueous Solutions by Dried Acid-Pretreated Activated Sludge 38
3.1.1. Biosorption kinetics 38
3.1.2. Biosorption isotherm 39
3.1.3. DAAS adsorption properties 41
3.2. Bioremoval of Sulfur Dye in High-Strength Dyeing Wastewater by Acidithiobacillus thiooxidans 44
3.2.1. Biosorption of SB15 by A. thiooxidans 44
3.2.2. Biodegradation of SB15 by A. thiooxidans 50
3.2.3. FTIR analysis 55
3.3. Use of Chitosan Beads as the Biosorbent and the Immobilized Support of Laccase for the Removal of Sulfur Dyes from Aqueous Solutions 55
3.3.1. Characterization of the CBs, GA-CBs, and LA-GA-CBs 55
3.3.2. Biosorption experiment 58
3.3.3. Enzymatic degradation 69

Ademoroti, C., Ukponmwan, D., Omode, A., 1992. Studies of textile effluent discharges in Nigeria. International Journal of Environmental Studies 39, 291-296.
Aksu, Z., Açıkel, Ü., Kutsal, T., 1997. Application of multicomponent adsorption isotherms to simultaneous biosorption of iron (III) and chromium (VI) on C. vulgaris. Journal of Chemical Technology and Biotechnology 70, 368-378.
Aksu, Z., Akpınar, D., 2000. Modelling of simultaneous biosorption of phenol and nickel (II) onto dried aerobic activated sludge. Separation and Purification Technology 21, 87-99.
Aksu, Z., Gönen, F., 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry 39, 599-613.
Al-Qodah, Z., Shawabkah, R., 2009. Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering 26, 127-136.
Alarfaj, N.A., El Khiate, Z.M., Moussa, E.A., 2008. Spectrophotometric Studies on Aggregation of Some Acid Dyes in Different Media. Journal of the King Saud University - Science 20, 99-110.
Anjaneyulu, Y., Chary, N.S., Raj, D.S.S., 2005. Decolourization of industrial effluents–available methods and emerging technologies–a review. Reviews in Environmental Science and Bio/Technology 4, 245-273.
Annadurai, G., Ling, L.Y., Lee, J.F., 2008. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials 152, 337-346.
Aremu, M., Layokun, S., Solomon, B., 2010. Production of poly (3-hydroxybutyrate) from cassava starch hydrolysate by Pseudomonas aeruginosa NCIB 950. Am J Sci Ind Res 1, 421-426.
Arıca, M.Y., Altıntas, B., Bayramoğlu, G., 2009. Immobilization of laccase onto spacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresource Technology 100, 665-669.
Auriol, M., Filali-Meknassi, Y., Adams, C.D., Tyagi, R.D., Noguerol, T.-N., Piña, B., 2008. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere 70, 445-452.
Bakshi, D.K., Sharma, P., 2003. Genotoxicity of textile dyes evaluated with Ames test and rec-assay. Journal of Environmental Pathology, Toxicology and Oncology 22.
Bandyopadhyay, S., Chowdhury, R., Bhattacharjee, C., 2013. Steady State Performance of a Bioreactor for Production of near Zero Sulfur Diesel (NZSD) and Bio-surfactant. Journal of Clean Energy Technologies 1, 189-193.
Basibuyuk, M., Forster, C., 2003. An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system. Process Biochemistry 38, 1311-1316.
Bayramoğlu, G., Yilmaz, M., Arica, M.Y., 2010. Reversible immobilization of laccase to poly (4-vinylpyridine) grafted and Cu (II) chelated magnetic beads: biodegradation of reactive dyes. Bioresource Technology 101, 6615-6621.
Bellot, J., Condoret, J., 1993. Modelling of liquid chromatography equilibria. Process Biochemistry 28, 365-376.
Birhanli, E., Yesilada, O., 2006. Increased production of laccase by pellets of Funalia trogii ATCC 200800 and Trametes versicolor ATCC 200801 in repeated-batch mode. Enzyme and Microbial Technology 39, 1286-1293.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
Champagne, P.P., Nesheim, M., Ramsay, J., 2010. Effect of a non-ionic surfactant, merpol, on dye decolorization of Reactive blue 19 by laccase. Enzyme and Microbial Technology 46, 147-152.
Champagne, P.P., Ramsay, J., 2007. Reactive blue 19 decolouration by laccase immobilized on silica beads. Applied Microbiology and Biotechnology 77, 819-823.
Champagne, P.P., Ramsay, J.A., 2005. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor. Applied Microbiology and Biotechnology 69, 276-285.
Chang, J., Hocheng, H., Chang, H., Shih, A., 2008. Metal removal rate of Thiobacillus thiooxidans without pre-secreted metabolite. Journal of Materials Processing Technology 201, 560-564.
Chanzu, H.A., Onyari, J.M., Shiundu, P.M., 2012. Biosorption of malachite green from aqueous solutions onto polylactide/spent brewery grains films: kinetic and equilibrium studies. Journal of Polymers and the Environment 20, 665-672.
Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Das, A.R., Guha, A.K., 2005. Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads. Journal of Colloid and Interface Science 288, 30-35.
Chen, A.H., Chen, S.M., 2009. Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. Journal of Hazardous Materials 172, 1111-1121.
Choy, K.K., Porter, J.F., McKay, G., 2000. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. Journal of Chemical & Engineering Data 45, 575-584.
Cote, P.N., Lan, X., Shakhnovich, A.I., Domingo, M.J., 1999. Sulfur dyes. Google Patents.
Couto, S.R., Toca-Herrera, J.L., 2006. Lacasses in the textile industry. Biotechnol Mol Biol Rev 1, 115-120.
Crini, G., Badot, P.M., 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science 33, 399-447.
Cristóvão, R.O., Tavares, A.P., Brígida, A.I., Loureiro, J.M., Boaventura, R.A., Macedo, E.A., Coelho, M.A.Z., 2011. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic 72, 6-12.
Daâssi, D., Rodríguez-Couto, S., Nasri, M., Mechichi, T., 2014. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. International Biodeterioration & Biodegradation 90, 71-78.
Diao, M., Nguyen, T.A., Taran, E., Mahler, S., Nguyen, A.V., 2014. Differences in adhesion of A. thiooxidans and A. ferrooxidans on chalcopyrite as revealed by atomic force microscopy with bacterial probes. Minerals Engineering 61, 9-15.
Dotto, G., Lima, E., Pinto, L., 2012. Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresource Technology 103, 123-130.
Dowd, J.E., Riggs, D.S., 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem 240, 863-869.
Fernández-Fernández, M., Sanromán, M.Á., Moldes, D., 2013. Recent developments and applications of immobilized laccase. Biotechnology Advances 31, 1808-1825.
Fewson, C.A., 1988. Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance. Trends in Biotechnology 6, 148-153.
Ghaedi, M., Hajati, S., Barazesh, B., Karimi, F., Ghezelbash, G., 2013. Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue. Journal of Industrial and Engineering Chemistry 19, 227-233.
Golob, V., Tušek, L., 1999. VIS absorption spectrophotometry of disperse dyes. Dyes and Pigments 40, 211-217.
Gulnaz, O., Kaya, A., Dincer, S., 2006. The reuse of dried activated sludge for adsorption of reactive dye. Journal of Hazardous Materials 134, 190-196.
Gulnaz, O., Kaya, A., Matyar, F., Arikan, B., 2004. Sorption of basic dyes from aqueous solution by activated sludge. Journal of Hazardous Materials 108, 183-188.
Gupta, A., Balomajumder, C., 2015. Simultaneous removal of Cr (VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. Journal of Water Process Engineering 6, 1-10.
Han, R., Zhang, S., Zhao, W., Li, X., Jian, X., 2009. Treating sulfur black dye wastewater with quaternized poly (phthalazinone ether sulfone ketone) nanofiltration membranes. Separation and Purification Technology 67, 26-30.
He, F., Hu, W., Li, Y., 2004. Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium. Chemosphere 57, 293-301.
Ho, Y.S., McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research 34, 735-742.
Ho, Y., McKay, G., 1999. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. Journal of Environmental Science & Health Part A 34, 1179-1204.
Hunger, K., 2003. Industrial dyes. Chemistry, properties, application.
Ip, A., Barford, J., McKay, G., 2009. Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. Journal of Colloid and Interface Science 337, 32-38.
Ju, D., Byun, I., Park, J., Lee, C., Ahn, G., Park, T., 2008. Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresource Technology 99, 7971-7975.
Juang, R.-S., Lin, S.H., Hsueh, P.Y., 2010. Removal of binary azo dyes from water by UV-irradiated degradation in TiO 2 suspensions. Journal of Hazardous Materials 182, 820-826.
Khan, S., Haq, F., Hasan, F., Saeed, K., Ullah, R., 2012. Growth and Biochemical Activities of Acidithiobacillus thiooxidans Collected from Black Shale. Journal of Microbiology Research 2, 78-83.
Körbahti, B.K., 2007. Response surface optimization of electrochemical treatment of textile dye wastewater. Journal of Hazardous Materials 145, 277-286.
Krajewska, B., 2004. Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology 35, 126-139.
Krajewska, B., Piwowarska, Z., 2005. Free vs chitosan-immobilized urease: Microenvironmental effects on enzyme inhibitions. Biocatalysis and Biotransformation 23, 225-232.
Kuenen, J., Robertson, L., 1992. The use of natural bacterial populations for the treatment of sulphur-containing wastewater, Microorganisms to Combat Pollution. Springer, pp. 115-130.
Kumar, M., Tripathi, B.P., Shahi, V.K., 2009. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd (II) from wastewater. Journal of Hazardous Materials 172, 1041-1048.
Kunzler, J., Samha, L., Zhang, R., Samha, H., 2011. Investigation of the Effect of Concentration on Molecular Aggregation of Cyanine Dyes in Aqueous Solution. American Journal of Undergraduate Research 9, 1-4.
Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40, 1361-1403.
Lee, E.Y., Cho, K.S., Ryu, H.W., 2000. Characterization of sulfur oxidation by an autotrophic sulfur oxidizer, Thiobacillus sp. ASWW-2. Biotechnology and Bioprocess Engineering 5, 48-52.
Liu, H.L., Chiu, C.W., Cheng, Y.C., 2003. The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnology and Bioengineering 83, 638-645.
Loc, N.H., Nhat, N.T.D., 2013. Production of asiaticoside from centella (Centella asiatica L. Urban) cells in bioreactor. Asian Pacific Journal of Tropical Biomedicine 3, 806-810.
Mattioli, D., De Florio, L., Giordano, A., Tarantini, M., Scalbi, S., 2005. Efficient use of water in the textile finishing industry.
McKay, G., Al Duri, B., 1989. Prediction of multicomponent adsorption equilibrium data using empirical correlations. The Chemical Engineering Journal 41, 9-23.
Midha, V., Dey, A., 2008. Biological treatment of tannery wastewater for sulfide removal. Int. J. Chem. Sc 6, 472-486.
Misra, N., Kumar, V., Goel, N.K., Varshney, L., 2014. Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye. Polymer 55, 6017-6024.
Moawad, H., El–Rahim, W.M.A., Khalafallah, M., 2003. Evaluation of biotoxicity of textile dyes using two bioassays. Journal of Basic Microbiology 43, 218-229.
Nguyen, M.L., Juang, R.S., 2015. Modification of crosslinked chitosan beads with histidine and Saccharomyces cerevisiae for enhanced Ni (II) biosorption. Journal of the Taiwan Institute of Chemical Engineers.
Nguyen, T.A., Juang, R.S., 2013. Treatment of waters and wastewaters containing sulfur dyes: A review. Chemical Engineering Journal 219, 109-117.
Nguyen, T.A., Juang, R.S., 2014. Biosorption of a Sulfur Dye from Aqueous Solutions by Dried Acid-Pretreated Activated Sludge. Adsorption 12, 1.
Ogunlaja, O., Aemere, O., 2009. Evaluating the efficiency of a textile wastewater treatment plant located in Oshodi, Lagos. African Journal of Pure and Applied Chemistry 3, 189-196.
Oudia, A., Queiroz, J., Simões, R., 2008. Potential and limitation of Trametes versicolor laccase on biodegradation of Eucalyptus globulus and Pinus pinaster kraft pulp. Enzyme and Microbial Technology 43, 144-148.
Pathak, H., Soni, D., Chauhan, K., 2014. Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill. Chemosphere 105, 126-132.
Penzkofer, A., Leupacher, W., Meier, B., Runde, B., Drexhage, K., 1987. Concentration-dependent absorption and emission behaviour of a pyrimidonecarbocyanine dye in hexafluoroisopropanol. Chemical Physics 115, 143-150.
Plagemann, R., Jonas, L., Kragl, U., 2011. Ceramic honeycomb as support for covalent immobilization of laccase from Trametes versicolor and transformation of nuclear fast red. Applied Microbiology and Biotechnology 90, 313-320.
Portaccio, M., Stellato, S., Rossi, S., Bencivenga, U., Eldin, M.M., Gaeta, F., Mita, D., 1998. Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enzyme and Microbial Technology 23, 101-106.
Robinson, J., 1995. Sulphur dyes and the environment. Journal of the Society of Dyers and Colourists 111, 172-175.
Romero, S., Blánquez, P., Caminal, G., Font, X., Sarrà, M., Gabarrell, X., Vicent, T., 2006. Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochemical Engineering Journal 31, 42-47.
Rotková, J., Šuláková, R., Korecká, L., Zdražilová, P., Jandová, M., Lenfeld, J., Horák, D., Bílková, Z., 2009. Laccase immobilized on magnetic carriers for biotechnology applications. Journal of Magnetism and Magnetic Materials 321, 1335-1340.
Rowlands, A., Panniers, R., Henshaw, E., 1988. The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. Journal of Biological Chemistry 263, 5526-5533.
Rudolfs, W., Baumgartner, W., 1931. Notes on Precipitation of Black Sulfur Dye Waste1. Industrial & Engineering Chemistry 23, 906-908.
Şahin, S., Demir, C., Güçer, Ş., 2007. Simultaneous UV–vis spectrophotometric determination of disperse dyes in textile wastewater by partial least squares and principal component regression. Dyes and Pigments 73, 368-376.
Senior, J., Guest, R., Wood, W., 1997. Sulfur Dyes. Kirk-Othmer Encyclopedia of Chemical Technology.
Shah, M.S., Desai, G., Mahida, M., 2013. Dye indicator absorbance spectra and complex ions formation in chromium (III) chloride-alkali halide-water system. Der Pharma Chemica 5, 212-215.
Shan, J., Zhang, T., 1998. Septic tank effluent denitrification with sulfur/limestone processes, Proceedings of the 1998 Conference on Hazardous Waste Research.
Shankarling, G., Paul, R., Thampi, J., 1997. Novel dyes and commercial forms. Colourage 44, 71-74.
Shekher, R., Sehgal, S., Kamthania, M., Kumar, A., 2011. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Research 2011.
Shore, J., 1995. Cellulosics dyeing. Society of Dyers and Colourists.
Sigmann, S.B., Wheeler, D.E., 2004. The quantitative determination of food dyes in powdered drink mixes. A high school or general science experiment. Journal of Chemical Education 81, 1475-1478.
Simonin, J.P., 2016. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal 300, 254-263.
Smith, P., Coackley, P., 1983. A method for determining specific surface area of activated sludge by dye adsorption. Water Research 17, 595-598.
Specht, K., Platzek, T., 1995. Textile dyes and finishes-Remarks to toxicological and analytical aspects. Deutsche Lebensmittel-Rundschau (Germany).
Sponza, D.T., 2002. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents). Environmental Monitoring and Assessment 73, 41-66.
Srivastava, V.C., Mall, I.D., Mishra, I.M., 2006. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal 117, 79-91.
Stroppolo, M., Falconi, M., Caccuri, A., Desideri, A., 2001. Superefficient enzymes. Cellular and Molecular Life Sciences CMLS 58, 1451-1460.
Taha, A.A., Shwaish, I.I., Mohammed, A.H., Haider, A.J., Stamatis, H., 2013. Production of a laccase from Botrytis cinerea (DSMZ 877) and application for textile phenolic dye decolorization. Energy Procedia 36, 862-871.
Tamburlini, G., von Ehrenstein, O.S., Bertollini, R., 2002. Children's health and environment: A review of evidence. European Environment Agency Copenhagen.
Tazisong, I.A., Senwo, Z.N., He, Z., 2015. Phosphatase hydrolysis of organic phosphorus compounds. Advances in Enzyme Research 3, 39.
Terrón, M.C., López-Fernández, M., Carbajo, J.M., Junca, H., Téllez, A., Yagüe, S., Arana-Cuenca, A., González, T., González, A.E., 2004. Tannic acid interferes with the commonly used laccase-detection assay based on ABTS as the substrate. Biochimie 86, 519-522.
Tseng, R.L., Wu, K.T., Wu, F.C., Juang, R.S., 2010. Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2, 4-dichlorophenol from water using activated carbons. Journal of Environmental Management 91, 2208-2214.
Turabik, M., 2008. Adsorption of basic dyes from single and binary component systems onto bentonite: Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. Journal of Hazardous Materials 158, 52-64.
Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z., Amouzgar, P., 2014. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers 113, 115-130.
Villadsen, J., Nielsen, J., Lidén, G., 2011. Enzyme Kinetics and Metabolic Control Analysis, Bioreaction Engineering Principles. Springer, pp. 215-269.
Wang, M., Yang, J., Wang, H., 2001. Optimisation of the synthesis of a water-soluble sulfur black dye. Dyes and Pigments 50, 243-246.
Watharkar, A.D., Jadhav, J.P., 2014. Detoxification and decolorization of a simulated textile dye mixture by phytoremediation using Petunia grandiflora and, Gailardia grandiflora: A plant–plant consortial strategy. Ecotoxicology and Environmental Safety 103, 1-8.
Wen, G., Pan, Z.H., Ma, J., Liu, Z.Q., Zhao, L., Li, J.J., 2012. Reuse of sewage sludge as a catalyst in ozonation–Efficiency for the removal of oxalic acid and the control of bromate formation. Journal of Hazardous Materials 239, 381-388.
Wu, F.C., Tseng, R.L., Juang, R.S., 2010. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Journal of Environmental Management 91, 798-806.
Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q., Zhao, Y., 2011. Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology 102, 828-834.
Zare, H., Heydarzade, H., Rahimnejad, M., Tardast, A., Seyfi, M., Peyghambarzadeh, S.M., 2012. Dried activated sludge as an appropriate biosorbent for removal of copper (II) ions. Arabian Journal of Chemistry.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top