跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴彥翰
研究生(外文):Yen-Han Lai
論文名稱:具高絕緣性之剝落石墨奈米薄片/氧化鋁複合相變材料
論文名稱(外文):Insulating thermally-conductive xGnP/Al2O3 composite phase change materials
指導教授:蒲念文蒲念文引用關係
指導教授(外文):Nen-Wen Pu
口試委員:葛明德劉益銘馬廣仁
口試委員(外文):Ming-Der GerYih-Ming LiuKeng-Jeng Ma
口試日期:2016-7-19
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:61
中文關鍵詞:相變材料膨脹石墨氧化鋁
外文關鍵詞:Phase Change MaterialExpanded GraphiteAlumina
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究主題為高絕緣性導熱複合相變材料,我們在相變材料中添加碳材,以提升複合相變材料的導熱性能。然而碳材會大幅降低相變材料之電阻,可能會造成電子元件短路,因此必須先對碳材進行改質。
本論文中使用的相變材料是石蠟(Tm = 63°C),填充碳材我們選用自製的以提升其絕緣性剝落石墨奈米薄片(xGnP)與雅士芙公司的石墨烯(G+),並使用硝酸鋁對碳材進行改質,在碳材表面成長氧化鋁,利用氧化鋁高絕緣特性彌補碳材高導電的缺點。
兩個填充碳材加入石蠟變成複合相變材料,我們從熱傳導係數檢測(Hot Disk)分析出xGnP的熱傳係數可以達到9.06 W/mK;熱差示掃描卡量計(DSC)部分則是G+整體比xGnP擁有大量的潛熱。接著用四點探針和超高電阻計量測,我們發現改質後的碳材電阻率大幅提升(從101Ω-cm提升到1013Ω-cm)。最後,在PCM應用測試,以電熱片模擬電池高溫時對PCM的影響,發現到,添加碳材的複合相變材料能快速把內部溫度排除,防止內部因高溫而熔化形變。
從上面的結果,我們研究出最佳參數,只需要利用少量且便宜的碳材進行改質,就可以使複合相變材料達到1013 Ω-cm之高絕緣特性,而熱傳性最佳可以達到9.06 W/mK。我們相信本研究中之複合相變材料可以應用於高功率電池產品電子元件產品或是其他領域。

The topic of this study is about the insulating thermally-conductive composite phase change materials,(PCMs). We added carbon materials in the PCMs to enhance their thermal conductivity, but the carbon material may significantly reduce the resistance, which might result in short circuit of electronic components. Therefore , the carbon materials must be modified in order to enhance the insulation.
In this study, the PCM that was used was paraffin wax(Tm = 63°C). And the carbon material, included homemade exfoliated graphite nanoplatelets(xGnP)and comercial graphene(G+)from Asfour. Then we used aluminum nitrate to modify the carbon materials by growth of alumina at the surface of the carbon material. The high insulation of alumina can overcome the high conductivity of earbon.
From the Hot Disk analysis of the xGnP, we found that its thermal conductivity can reach 9.06 W / mK. Differential scanning calorimetry(DSC)showed that G+-filled PCMs has a larger latent heat than xGnP-filled PCMs. And by four-point probe and insulation resistance tester , we found that the resistivity of the carbon material after modification significantly increased (from 101Ω-cm up to 1013Ω-cm). Finally, in the PCM simulation test, we used a electric heating pad to simulation the high temperature environment of battery pack. We found that the composite PCM with a carbon fillers can quickly remove the heat, and prevent overheating and melting of the PCM.
From the above results, we found the optimal parameters, only a small content of modified carbon fillers can achieve both high insulation(1013 Ω-cm), and high thermal counductivity(9.06 W / mK). We believe our composite PCMs can find applications in the field of high-power battery packs, electronic components, or other product areas.

書名頁 i
論文口試委員審定書 ii
授權書 iii
摘要 vii
Abstract viii
誌謝 ix
目錄 x
表目錄 xiii
圖目錄 xiv
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 3
第二章 文獻回顧 5
2.1. 石蠟(Paraffin wax) 5
2.2. 碳材材料介紹 6
2.2.1. 天然石墨(Graphite) 6
2.2.2. 膨脹石墨(Expanded Graphite) 6
2.2.3. 奈米碳管(Carbon Nanotube) 8
2.2.4. 石墨烯(Graphene) 9
2.3. 氧化物陶瓷材料介紹 10
2.3.1. 硝酸鋁(Aluminium nitrate) 10
2.3.2. 氧化鋁(Aluminium oxide) 11
2.4. 相變化材料(Phase Change Material , PCM) 12
2.5. 碳材相變材料 12
2.6. 絕緣複合相變材料 14
2.7. 穩定性熱相變材料(Shape Stabilized Phase Change Material) 15
第三章 實驗方法 17
3.1. 實驗藥品 17
3.2. 實驗設備與儀器 17
3.3. 研究流程與命名方法 18
3.4. 材料製備 21
3.4.1. 膨脹石墨(Expanded Graphite) 21
3.4.2. 剝落石墨奈米薄片(xGnP) 21
3.4.3. 改質剝落石墨奈米薄片(MxGnP) 21
3.4.4. 熱相變材料應用於散熱元件製作與方法(PCM) 21
3.5. 特性分析 22
3.5.1. 奈米碳材料之特性分析 22
3.5.2. 陶瓷材料之特性分析 24
3.5.3. 熱相變材料之特性分析 24
第四章 實驗結果與討論 27
4.1. 碳材對相變材料之影響 27
4.1.1. xGnP和G+之基本特性 27
4.1.2. 兩種碳材填料對相變材料之特性影響分析 32
4.2. 改質碳材對相變材料之影響 35
4.2.1. 莫耳濃度對碳材之影響 35
4.2.2. 加熱溫度對碳材之影響 40
4.2.3. 改質碳材對相變材料之特性分析 42
4.3. PCM應用測試 ( 仿電池高溫測試 ) 48
第五章 結論 53
參考文獻 56
[1]馮榮豐,陳錫添,“奈米工程概論,”全華科技圖書,p5-2,2006。
[2]黃淑娟,奈米碳材-最具潛力的新素材,工業材料雜誌,第243期,2007。
[3]黃鎮東,熱介面材料之特性與應用,工業材料雜誌,第200期,2005。
[4]林子婷,“化學差層法製備石墨烯奈米薄片於熱相變材料之應用” ,碩士論文,國防大學理工學院應用化學及材料科學學系,桃園,2010。
[5]艾德生,新能源材料:基礎與應用,化學工業出版社,2010。
[6]吳宗男,相變化材料封裝方法與應用於熱交換器之分析,碩士論文,崑山科技大學機械工程研究所,第1-106頁,2011。
[7]Zhao,J., Guo,Y., Feng,F., Tong,Q., Qv,W., and Wang,H., “Microstructure and Thermal Properties of a Paraffin/Expanded Graphite Phase-Change Composite For Thermal Storage,” Renewable Energy, Vol. 36, pp. 1339-1342, 2011.
[8]Kenisarin,M., and Mahkamov,K., “Solar Energy Storage Using Phase Change Materials,” Renewable Sustainable Energy Reviews, Vol. 11, pp. 1913-1965, 2007.
[9]Koca,A., Oztop,H.F., and Koyun,T., “Energy and Exergy Analysis of a Latent Heat Storage System with Phase Change Materials for a Solar Collector,” Renewable Energy, Vol. 33, pp. 567-574, 2008.
[10]Long,J.Y., “Numerical and Experimental Investigation for Heat Transfer in Triplex Concentric Tube with Phase Change Materials for Thermal Energy Storage,” Solae Energy, Vol. 82, pp. 977-985, 2008.
[11]Verma,P., and Singal,V.S.K., “Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material,” Renewable Sustainable Energy Reviews, Vol. 12, pp. 999-1031, 2008.
[12]Mazman,M., Cabeza,L.F., ans Mehling,H., “Utilization of Phase Change Materials in Solar Domestic Hot Water Systems,” Renewable Energy, Vol. 34, pp. 1639-1643, 2009.
[13]Karaipekli,A., and Sarl,A., “Capric-Myristic Acid/Vermiculite Composite as Form-Stable Phase Change Material for Thermal Energy Storage,” Solar Energy, Vol. 83, pp. 323-332, 2009.
[14]Chen,C.Z., Wang,L.G., and Huang,Y., “Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Material,” Solar Energy Materials & Solar Cells, Vol. 92, pp. 1382-1387, 2008.
[15]Alkan,C., Sarl,A., and Karaipekli,A., “Preparation, Characterization, and Thermal Properties of Microencapsulated Phase Change Material for Thermal Energy Storage,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 143-147, 2009.
[16]Karaipekli,A., and Sarl,A., ”Capric-Myristic Acid/Expanded Perlite Compositi as Form-Stable Phase Change Material for Latent Heat Thermal Energy Storage,” Renewable Energy, Vol. 33, pp. 2599-2605, 2008.
[17]Shukla,A.,Buddhi,D.,and Sawhney,R.L.,”Thermal Cycling Test of Few Selected Inorganic and Organic Phase Change Materials,” Renewable Energy, Vol. 33, pp. 2606-2614, 2008.
[18]付英,曾令可,王慧,劉艷春,相變儲能材料在工業餘熱回收領域的應用研究進展,工業爐,2009。
[19]鄭立輝,盛奎隆,潘金亮,石油蠟的生產及加工,化學工業出版社
[20]陳麗如、張雅淇、張居欣、李晧仁,建築外殼結構之前熱熱控技術,工業材料雜誌262期,第127-133頁,2008。
[21]https://zh.wikipedia.org/wiki/%E7%A2%B3
[22]Fukushima,H., “Graphite Nanoreinforcements in Polymer Nanocomposites,” Ph. D. Thesis, Vol. 64, pp. 2343, 2003.
[23]Mills,A., Farid,M., Selman,J.R., and Hallaj,S.A., “Thermal Conductivity Enhancement of Phase Change Materials Using a Graphite Matrix,” Applied Thermal Engineering, Vol. 26, pp. 1652-1661, 2006.
[24]沈萬慈、劉英傑、曹乃真、溫詩鑄,膨脹石墨的微觀結構分析,炭素技術,第1-6頁,1996。
[25]吳宗霖,“奈米碳薄片複合材料之製程與物性分析”,博士論文,機械與航空工程研究所,第1-177頁,2008。
[26]Xiao,M., Femg,B., and Gong,K., “Preparation and Performance of Shape Stabilized Phase Change Thermal Storage Material with High Thermal Conductivity,” Energy Conversion and Management, Vol. 43, pp. 103-108, 2002.
[27]https://www.encyclopedia.thefreedictionary.com.
[28]Iijima,S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[29]Endo,M., Takeuchi,K., Igarashi,S., Kobori,K., Shiraishi,M., and Kroto,H.W., “The Production and Structure of Pyrolytic Carbon Nanotubes (PCNTs),” Journal of Physics and Chemistry of Solids, Vol. 54, pp. 1841-1848, 1993.
[30]Kyotani,T., Sonobe,N., and Tomita,A., “Formation of Heighly or Ientated Graphite from Polycrylonitrile by Using a Two-Dimensional Space Between Montnorillonie Lamellae ,” Nature, pp. 311-333, 1988.
[31]Novoselov,K.S., Geim,A.K., Morozov,S.V., Jiang,D., Zhang,Y., Dubonos,S.V., Grigorieva,I.V., and Firsov,A.A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, pp. 666-669, 2004.
[32]Meyer,J.C., Geim.A.K., Katsnelson,M.I., Novoselov,K.S., Booth,T.J., and Roth,S.,et.al., “The Structure of Suspended Graphene Sheets,” Nature, Vol. 446, pp. 60-63, 2007.
[33]Ishigami, M. J., Chen, H. W., Cullen, W. G., Fuhrer, M. S., and Williams, E. D., “Atomic Structure of Graphene on SiO2,” Nano Letters, Vol. 7, pp. 1643-1648, 2007.
[34]https://zh.wikipedia.org/wiki/%E7%A1%9D%E9%85%B8%E9%93%9D
[35]http://www.zwbk.org/MyLemmaShow.aspx?zh=zh-tw&lid=225988
[36]https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9%93%9D
[37]http://ceramics.taissic.com/front/bin/ptlist.phtml?Category=101251
[38]http://highscope.ch.ntu.edu.tw/wordpress/?p=48546
[39]Zhang,Zhengguo., “Study on Paraffin/Expanded Graphite Composite Phase Change Thermal Energy Storage Material,” Energy Conversion & Managemen, Vol. 47, pp. 303-310, 2006.
[40]Ahmet,S., and Ali,K., “Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material,” Applied Thermal Engineering, Vol. 27, pp. 1271-1277, 2007.
[41]Xiang,J., and Drzal,L.T., “Investigation of Exfoliated Graphite Nanoplatelets (xGnP)in Improving Thermal Conductivity of Paraffin Wax Based Phase Change Material,” Solar Energy Materials & Solar Cells, Vol. 95, pp. 1811-1818, 2011.
[42]范揚晟,“以石墨烯及奈米碳材提升熱相變材料性能之研究”,碩士論文,國防大學理工學院應用化學及材料科學學系,桃園,2012。
[43]Li,M., “A nano-graphite/paraffin phase change material with high thermal conductivity,” Applied Energy, Vol. 106, pp. 25-30, 2013.
[44]廖家緯,“以奈米碳材製備導熱及高電阻熱相變複合材料之研究”,碩士論文,國防大學理工學院應用化學及材料科學學系,桃園,2014。
[45]Tang,X., Zhu,B., Xu,M., Zhang,W., Yang,Z., Yin,G., He,D., Wei,H., and Zhai,X., “Shape-stabilized phase change materials based on fatty acid eutectics/expanded graphite composites for thermal storage,” Energy and Buildings, Vol. 109, pp. 353-360, 2015.
[46]http://www.ncku.edu.tw/facility/facility/devices/10_FE-SEM.htm
[47]Wang,G., Yang,J., Park,J., Gou,X., Wang,B., Liu,H., and Yao,J., “Facile Synthesis and Characterization of Graphene Nanosheets,” J. Phys. Chem. C, pp. 8192-8195, 2008.
[48]Bandla,S., and Hanan,J.C., “Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites,” Journal of Materials Science, pp. 876-882, 2011.
[49]Abbasi,H., Antunes,M., and Velasco,J.I., “Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separatio,” eXPRESS Polymer Letters, Vol. 9, pp. 412-423, 2015.
[50]Abboud,Z., Vivekanandhan,S., and Misra,M., “Leaf extract mediated biogenic process for the decoration of graphene with silver nanoparticles,” Materials Letters, Vol. 178, pp. 115-119, 2016.
[51]Sari,A., and Karaipekli,A., “Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage,” Solar Energy Materials & Solar Cells, Vol. 93, pp. 571-576, 2009.
[52]Choi,DH., Lee,J., Hong,H., and Kang,YT., “Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application,” International Journal of Refrigeration, Vol. 42, pp. 112-120, 2014.
[53]Shaikh,S., Lafdi,K., and Hallinan,K.,“Carbon nanoadditives to enhance latent energy storage of phase change material,” Journal of Applied Physics, 2008.
[54]Sahan,N., and Paksoy,HO., “Thermal enhancement of paraffin as a phase change material with nanomagnetite,” Solar Energy Materials & Solar Cells, Vol. 126, pp. 56-61, 2014.
[55]丁晴、方昕、闫晨、范利武、俞自涛,“石墨奈米片尺寸對複合相變材料儲熱特性的影響”,化工學報,Vol.66,2015。
[56]http://highscope.ch.ntu.edu.tw/wordpress/?p=2720
[57]Jin,H., Ji,Z., Yuan,J., Li,J., Liu,M., Xu,C., Dong,J., Hou,P., and Hou,S., “Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite,”Journal of Alloys and Compopunds, Vol. 620, pp. 361-367, 2015.
[58]Sathyaseelan,B., Baskaran,I., and Sivakumar,K., “Phase Transition Behavior of Nanocrystalline Al2O3 Powder,” Soft Nanoscience Letters, Vol. 3, pp. 69-74, 2013.
[59]Yazdani,B., Xu,F., Ahmad,I., Hou,X., Xia,Y., and Zhu,Y., “Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites,” Scientific Reports, 2015.
[60]http://resource.blsh.tp.edu.tw/science/content/1970/00030003/0010.htm,(1970)
[61]葉建弦、陳嬿如、林俊凱、林育立,“改變燒結溫度對 Bi0.4Sb1.6Te3合金微觀結構與熱電性能之影響”,工業技術研究院綠能與環境研究所,明志科技大學材料工程系。
[62]陳尚謙,“準單晶碲化鉍奈米線和薄膜的熱電性質研究”,碩士論文,國立政治大學理學院應用物理研究所,2011。
[63]http://highscope.ch.ntu.edu.tw/wordpress/?p=48196
[64]http://materials.gl.ntu.edu.tw/html/material/material-10.htm,(材料的熱學性質)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊