跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀博源
研究生(外文):CHI,PO-YUAN
論文名稱:運用三維方向性天線改善超密集小細胞異質性網路系統容量
論文名稱(外文):Capacity Improvement with Three-Dimension Directional Antennas in Ultra-Dense Heterogeneous Small-Cell Networks
指導教授:蔡昂勳
指導教授(外文):TSAI,ANG-HSUN
口試委員:黃建華呂思翰
口試委員(外文):HUANG,JANE-HWALU,SSU-HAN
口試日期:2017-05-11
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:光電工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:小細胞異質性網路方向性天線系統傳輸率鏈結可靠度
外文關鍵詞:Small-cellsheterogeneous network (HetNet)directional antennasystem throughputlink reliability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
小細胞(small-cell)能以低功率之異質性網路(heterogeneous network, HetNet)架構改善系統容量和覆蓋區域,但是所產生的巨細胞(macrocell)和小細胞間的二階層式干擾(two-tier interference)卻是主要的挑戰,尤其是在公寓大樓中密集佈建的小細胞網路更是顯著。
在本論文中,我們提出以三維方向天線來減少二階層式干擾,提高超密集異質小細胞網路的系統容量。我們探討三維方向天線、資源塊(resource block, RB)使用率以及功率控制在公寓大樓佈建的超密集小細胞系統中對系統傳輸率和鏈結可靠度的影響。三維方向天線能以其主波瓣的高功率增益特性提供較強的信號給用戶,而以較低增益的旁波瓣來減輕鄰近小細胞基地台間的干擾。此外我們調整小細胞的資源塊使用率,並控制小細胞的發射功率,來進一步管理二階層式干擾,因此在鏈結可靠度需求的標準下,小細胞的平均系統傳輸率會明顯地提昇。模擬結果顯示,在鏈結可靠度需求標準下,12扇區方向性天線會比3扇區方向性天線增加229 %的平均系統傳輸率。但是在同樣條件下,全向性天線則無法提供穩定的服務品質。

Small-cells can improve the system capacity and coverage with low power for heterogeneous networks (HetNets). However, the two-tier interference from macrocell and small-cells is the key challenge when small-cells are densely deployed in a space, such as an apartment building. In this thesis, we propose the three-dimension directional antennas to decrease the two-tier interference and improve the system capacity for the ultra-dense heterogeneous small-cell network. We investigate the impacts of the three-dimension directional antennas, the resource block (RB) usage ratio, and the transmission power on the system throughput and link reliability in an apartment building with the ultra-dense small-cell system. The three-dimension directional antenna can provide the strong signal to users with the high main lobe gain, and mitigate the interference to neighboring small-cells with low side lobes. In addition, we adjust the amount of available RBs used by small-cells and control the transmission power of small-cells to further manage the two-tier interference. Therefore, the average system throughput can be significantly improved under the link reliability requirement. Simulation results show that our proposed 12-sector directional antenna can improve 229% average system throughput compared to the 3-sector directional antenna under the link reliability requirement. Meanwhile, the omnidirectional antenna can not provide the stable service quality for users in the ultra-dense heterogeneous small-cell network.
誌謝 ii
摘要 iv
Abstract v
目錄 vi
表目錄 ix
圖目錄 x
1. 前言 1
1.1. 研究背景 1
1.1.1. 小細胞基地台探討 2
1.1.2. 異質性網路探討 3
1.2. 研究動機 4
1.3. 文獻探討 6
1.4. 研究目的 8
1.5. 研究貢獻 9
1.6. 論文架構 9
2. 系統模型 10
2.1. 系統架構 10
2.2. 通道模型 11
2.2.1. 自由空間模型 12
2.2.2. 遮蔽效應模型 12
2.2.3. 多重路徑衰減與延遲擴散模型 13
2.2.4. 空間通道衰落模型 15
2.3. SINR 15
2.4. 性能指標 16
2.4.1. 系統傳輸率 17
2.4.2. 鏈結可靠度 17
3. 干擾管理機制 19
3.1. 三維方向性天線設計 19
3.1.1. 方向性天線特性探討 19
3.1.2. 方向性天線應用 21
3.2. 限制可用資源塊 25
3.2.1. 可用資源塊限制原理探討 26
3.2.2. 可用資源塊限制方法運用 26
3.3. 功率控制 26
3.3.1. 功率控制與能量效益探討 26
3.3.2. 功率控制方法運用 26
4. 模擬結果 28
4.1. 模擬環境設定 28
4.2. 結果與討論 30
4.2.1. 資源塊使用率ρs對鏈結可靠度模擬結果與討論 30
4.2.2. 資源塊使用率ρs對系統平均傳輸率模擬結果與討論 37
4.2.3. 功率控制對鏈結可靠度模擬結果與討論 43
4.2.4. 功率控制對系統傳輸率模擬結果與討論 48
4.2.5. 模擬結果討論 51
5. 結論與未來展望 55
5.1. 結論 55
5.1.1. 鏈結可靠度 55
5.1.2. 系統傳輸率 55
5.1.3. 功率控制 55
5.2. 未來工作 56
參考文獻 57




[1]R. Baldemair, E. Dahlman, G. Fodor, G. Mildh, S. Parkvall, Y. Selen, H.Tullberg, and K. Balachandran, “Evolving Wireless Communications: Addressing the Challenges and Expectations of the Future,” IEEE Vehicular Technology Magazine, vol. 8, no. 1, pp. 24-30, March 2013.
[2]A. Khandekar, N. Bhushan, J. Tingfang, and V. Vanghi, “LTE Advanced: Heterogeneous Networks,” in European Wireless Conference, pp. 978-982, April 2010.
[3]J. Acharya and S. Gaur, “Heterogeneous Networks-Theory and Standardization in LTE,” in IEEE WCNC Tutorial Presentation, 2013.
[4]D. Lopez-Perez, I. Guvenc, G. De La Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced Intercell Interference Coordination Challenges in Heterogeneous Networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 22-30, June 2011.
[5]M. Feng, T. Jiang, D. Chen, and S. Mao, “Cooperative Small Cell Networks: High Capacity for Hotspots with Interference Mitigation,” IEEE Wireless Communications, vol. 21, no.6, December 2014.
[6]L. Ho, D. Lopez-Perez, H. Claussen, “Downward Facing Directional Antennas for Ultra-high Density Indoor Small Cells,” The Journal of Signal Processing Systems, vol. 83, no. 2, pp. 255-263, May 2016.
[7]G. Gougeon, Y. Corre, A. De Domenico, A. Clemente, A. Sattar Kaddour,S. Bories, and Y. Lostanlen, “LTE System-Level Evaluation of Directive Compact Antennas for Small-Cell Networks,” in 10th European Conference.on Antennas and propagation (EuCAP), April 2016.
[8]R. Qian, M. Sellathurai, “Interference Mitigation in Femtocell Networks using Single-Radio Parasitic Antennas,” in IEEE International Conference on Communications (ICC), pp. 2828-2833, Sep. 2015.
[9]T. Kim, I. Bang, and D. K. Sung, “Design Criteria on a mm-Wave-based Small Cell with Directional Antennas,” in IEEE International Symposium, pp. 103-107, June 2015.
[10]S. M. Razavizadeh, M. Ahn, and I. Lee, “Three-Dimensional Beamforming: A new enableing technology for 5G wireless networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 94-101, Nov. 2014.
[11]S. Hamouda, M. Zitoun, and S. Tabbane, “A New Spectrum Sharing Trade in Heterogeneous Networks,” in IEEE 78th Vehicular Technology Conference (VTC-Fall), pp. 1-5, Jan. 2013.
[12]L. Venturino, N. Parsad, and X. Wang, “Coordinated Scheduling and Power Allocation in Downlink Multicell OFDMA Networks,” IEEE Transaction on Vehicular Technology, vol. 58, no. 6, July 2009.
[13]V. Chandrasekhar, J. G. Andrews, T. Muharemovic, Z. Shen and A. Gatherer, “Power Control in Two-Tier Femtocell Networks,” IEEE Transaction on Wireless Communications, vol. 8, no. 8, Aug. 2009.
[14]V. Chandrasekhar, J. G. Andrews, Z. Shen, T. Muharemovic and A. Gatherer, “Distributed Power Control in Femtocell-Underlay Cellular Networks,” in IEEE Global Telecommunications Conference, Dec. 2009.
[15]S. Lee, H. Kim, Y. Jo, D. Hong, Y-J. Chung and J. Lim, “Inter-Cell Interference Coordination by Joint Employment of ABSF and Power Control in Heterogeneous Networks,” in IEEE Asia-Pacific Communications Conference (APCC). pp. 180-183, Oct. 2014.
[16]L. Zhang, G. Feng, and W. Nie, “A Comparison Study of Coupled and Decoupled Uplink-Downlink Access in Heterogeneous Cellular Networks,” in IEEE Global Communications Conference, Dec. 2015.
[17]T. Ran, S. Sun, Y. Sun, and N. Chen, “An Improved SINR Estimation Method for Heterogeneous Networks,” in IEEE Vehicular Technology Conference (VTC-Spring), May 2015.
[18]D. Lopez-Perez, M. Ding, H. Claussen, and A. H. Jafari, “Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments,” IEEE Communication Surveys & Tutorials, vol. 17, no. 4, pp. 2078-2101, June 2015.
[19]3GPP,“Further advancements for E-UTRA physical layer aspects,”3GPP, Tech. Rep., TR 36.814 V9.0.0, March 2010.
[20]3GPP, “Spacial channel model for Multiple Input Multiple Output (MIMO) Simulations,” 3GPP, Tech. Rep., TR 25.996 ver. 6.1.0, Sept. 2003.
[21]R. Jain, “Channel Models: A Tutorial,” WiMax Forum, v1.0, Feb. 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top