(34.229.64.28) 您好!臺灣時間:2021/05/06 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝旻錞
研究生(外文):SIE, MIN-CHUN
論文名稱:鎳基觸媒應用於一氧化碳消除之研究
論文名稱(外文):Study on the Nickel based Catalysts in Carbon Monoxide Elimination
指導教授:汪成斌汪成斌引用關係
指導教授(外文):WANG, CHEN-BIN
口試委員:汪成斌吳國輝葉君棣吳仁彰唐志偉
口試委員(外文):WANG, CHEN-BINWU, KUO-HUIYE, JUN-DIWU, REN-ZHANGTANG,ZHI-WEI
口試日期:2017-05-15
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:氧化鎳複合氧化物CO氧化催化活性
外文關鍵詞:NiOCompositeCO oxidationCatalytic performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬以金屬氧化物摻雜氧化鎳,評估具CO消除之活性觸媒能運用在熱水器出水端及防毒面具之濾材。探討變因包含NiO的負載量及不同金屬氧化物摻雜NiO,利用沈澱法、軟模板法與悍馬法製備金屬氧化物;含浸法、水熱法、初期潤濕法與沉積析出氧化法製備支撐性鎳基觸媒。以X光粉末繞射儀(XRD)、程溫還原(TPR)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM-EDS)、感應耦合電漿原子放射光譜儀(ICP-AES)、氮氣等溫吸附/脫附(BET)等儀器鑑定觸媒特性,並以自製之流式微反應系統評估CO氧化催化活性。實驗結果顯示具活性之金屬氧化物包含Co3O4、NiO、CuO及GO;摻雜NiO製成之0.2%Ni/Co3O4及Ni/GO鎳基觸媒可藉由協同效應而提升CO氧化活性;摻雜適量NiO可藉NiCo2O4複合物的生成而提升催化活性及抗燒結能力;其中以0.2%Ni/Co3O4觸媒之活性表現最佳, T50為98 ℃,於125 ℃之長時間測試可維持50小時,活性僅衰退5%。
The purpose of this study focused on the design of active metal oxide supported nickel catalysts (Ni/MOx) on the abatement of CO, and application on the exit of water heater and mask filter. A series Ni/MOx catalysts were prepared by impregnation (Imp), hydrothermal (H), incipient wetness impregnation (IWI) and deposition precipitation oxidation (DPO) methods, and the DPO method was applied to prepare various loading of Ni/Co3O4 catalysts, respectively. All catalysts were characterized through XRD, TEM, BET, TPR, ICP, SEM-EDX and Raman techniques. Catalytic performance towards CO oxidation were tested from 25 to 200 °C in a self-designed fluidized micro-reactor. The results indicated that the Co3O4, NiO, CuO and GO were active in the CO oxidation. Apparent synergetic effect for the 0.2%Ni/Co3O4 and Ni/GO catalysts could induce the catalytic performance on CO oxidation. Optimized loading of nickel ion could incorporate into the Co3O4 lattice to form NiCo2O4 composite, and enhanced the activity and resistant to sintering. The best catalyst for abatement of CO was 0.2%Ni/Co3O4 among these catalysts. The T50 approached 98 ℃ and the durability maintained about 50 h at 125 ℃, which decayed only 5%.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1.緒論 1
1.1 前言 1
1.2 消除一氧化碳文獻回顧 3
1.3 研究方向與動機 9
2.實驗 10
2.1 實驗藥品 10
2.2 觸媒之製備 11
2.2.1 Co3O4及Ni/Co3O4觸媒之製備 11
2.2.2 CuO及Ni/CuO觸媒之製備 12
2.2.3 Fe2O3及Ni/Fe2O3觸媒之製備 12
2.2.4 TiO2及Ni/TiO2觸媒之製備 13
2.2.5 GO及Ni/GO觸媒之製備 13
2.2.6 Al2O3及Ni/Al2O3觸媒之製備 14
2.3 觸媒特性鑑定 22
2.3.1 X光粉末繞射儀(XRD) 22
2.3.2 程溫還原(TPR) 23
2.3.3 氮氣等溫吸附-脫附測試(BET) 26
2.3.4 穿透式電子顯微鏡/高解析穿透式電子顯微鏡(TEM/HRTEM) 27
2.3.5 場發射掃描式電子顯微鏡與(FESEM) 27
2.3.6 感應耦合電漿放射光譜儀(ICP-OES) 28
2.3.7 拉曼光譜(Raman) 29
2.4 一氧化碳氧化活性測試 29
2.4.1 流式微反應系統裝置 29
2.4.2 活性測試數據分析 30
3.結果與討論 35
3.1 Co3O4及Ni/Co3O4觸媒催化一氧化碳氧化 35
3.1.1 新鮮觸媒之特性鑑定 35
3.1.2 觸媒之活性評估 46
3.1.3 反應後觸媒之特性鑑定 46
3.2 CuO及Ni/CuO觸媒催化一氧化碳氧化 50
3.2.1 新鮮觸媒之特性鑑定 50
3.2.2 觸媒之活性評估 55
3.2.3 反應後觸媒之特性鑑定 55
3.3 Fe2O3及Ni/Fe2O3觸媒催化一氧化碳氧化 58
3.3.1 新鮮觸媒之特性鑑定 58
3.3.2 觸媒之活性評估 63
3.3.3 反應後觸媒之特性鑑定 63
3.4 TiO2及Ni/TiO2觸媒催化一氧化碳氧化 66
3.4.1 新鮮觸媒之特性鑑定 66
3.4.2 觸媒之活性評估 71
3.4.3 觸媒之反應後特性鑑定 71
3.5 GO及Ni/GO觸媒催化一氧化碳氧化 74
3.5.1 新鮮觸媒之特性鑑定 74
3.5.2 觸媒之活性評估 79
3.5.3 反應後觸媒之特性鑑定 79
3.6 Al2O3及Ni/Al2O3觸媒催化一氧化碳氧化 82
3.6.1 新鮮觸媒之特性鑑定 82
3.6.2 觸媒之活性評估 87
3.6.3反應後觸媒之特性鑑定 87
4.結論 90
5.參考文獻 91
自傳 100

[1]http://enews.nfa.gov.tw/issue/961025/images/radio.htm(2016.03.01)
[2]http://www.military.tku.edu.tw/2page1/news.php?Sn=234(2016.05.30)
[3]http://www.nfa.gov.tw/main/List.aspx?ID=2&MenuID=522&ListID=5077(2017.02.09)
[4]http://www.moi.gov.tw/chi/chi_news/news_detail.aspx?type_code=02&sn=11284(2016.11.16)
[5]http://www.appledaily.com.tw/realtimenews/article/new/20170301/1066639(2017.03.01)
[6]http://sowf.moi.gov.tw/stat/week/list.htm(2017.03.01)
[7]Hinojosa-Reyes Mariana, Zanella Rodolfo, Maturano-Rojas Viridiana and, Rodríguez-González Vicente, “Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction,” Applied Surface Science, Vol. 368, pp. 224–232, 2016.
[8]Alberto Sandoval, Rodolfo Zanella and, Tatiana E. Klimova , “Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation,” Catalysis Today, Vol. 282, pp. 140–150, 2017.
[9]Botao Qiao, Jin‐Xia Liang, Aiqin Wang, Jingyue Liu and, Tao Zhang, “Single atom gold catalysts for low-temperature CO oxidation,” Chinese Journal of Catalysis, Vol. 37, pp. 1580–1586, 2016.
[10]Masaaki Haneda, Mina Todo, Yuichiro Nakamura and, Mastomo Hattori, “Effect of Pd dispersion on the catalytic activity of Pd/Al2O3 for C3H6 and CO oxidation,” Catalysis Today, Vol. 281, pp. 447–453, 2017.
[11]Yu Bai , Chunlei Wang , Xingyi Zhou, Junling Lu and, Yujie Xiong, “Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2 interface toward enhanced CO oxidation,” Progress in Natural Science: Materials International, Vol. 26, pp. 289–294, 2016.
[12]S. Sreedhala, V. Sudheeshkumar and, C.P. Vinod, “CO oxidation on large high-index faceted Pd nanostructures,” Journal of Catalysis, Vol. 337, pp. 138–144, 2016.
[13]Mehdi D. Esrafili, Parisa Nematollahi and, Roghaye Nurazar, “Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO,” Superlattices and Microstructures, Vol. 92, pp. 60–67, 2016.
[14]Melanie J. Hazlett, Melanie Moses-Debusk, James E. Parks II, Lawrence F. Allard and, William S. Epling , “Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation,” Applied Catalysis B: Environmental, Vol. 202, pp. 404–417, 2017.
[15]Xiaowei Hong , Ye Sun , Tianle Zhu and, Zhiming Liu, “Promoting effect of TiO2 on the catalytic performance of Pt-Au/TiO2(x)-CeO2 for the co-oxidation of CO and H2 at room temperature,” Applied Surface Science, Vol. 396, pp. 226–234, 2016.
[16]Hongwei Gao, “CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study,” Applied Surface Science, Vol. 379, pp. 347–357, 2016.
[17]Aleksey A. Vedyagin , Alexander M. Volodin , Roman M. Kenzhin , Vladimir O. Stoyanovskii , Yury V. Shubin , Pavel E. Plyusnin and, Ilya V. Mishakov , “Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation,”Catalysis Today, in press, 2016.
[18]Hongling Guan, Jian Lin, Lin Li, Xiaodong Wang and, Tao Zhang, “Highly active subnano Rh/Fe(OH)x catalyst for preferential oxidation of CO in H2-rich stream,” Applied Catalysis B: Environmental, Vol. 184, pp. 299–308, 2016.
[19]Jun Yu, Dongsen Mao, Dan Ding, Xiaoming Guo and, Guanzhong Lu, “New insights into the effects of Mn and Li on the mechanistic pathway for CO hydrogenation on Rh-Mn-Li/SiO2 catalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 423, pp. 151–159, 2016.
[20]Seungwon Lee, Jung-Soo Kang, Kam Tong Leung, Wondoo Lee, Dongyun Kim, Seungyoon Han, Wonjun Yoo, Hee Jung Yoon, Kyusuk Nam and, Youngku Sohn, “Unique multi-phase Co/Fe/CoFe2O4 by water–gas shift reaction, CO oxidation and enhanced supercapacitor performances,” Journal of Industrial and Engineering Chemistry, Vol. 43, pp. 69–77, 2016.
[21]Kyeounghak Kim and, Jeong Woo Han , “Mechanistic study for enhanced CO oxidation activity on (Mn,Fe) co-doped CeO2(111),” Catalysis Today, in press, 2016.
[22]G. Salek, P. Alphonse, P. Dufour, S. Guillemet-Fritsch and, C. Tenailleau , “Low-temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides,” Applied Catalysis B: Environmental, Vol. 147, pp. 1–7, 2014.
[23]Katabathini Narasimharao, Abdulmohsen Al-Shehri and, Shaeel Al-Thabaiti, “Porous Ag–Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide,” Applied Catalysis A: General, Vol. 505, pp. 431–440, 2015.
[24]Abolfazl Biabani-Ravandi and, Mehran Rezaei, “Low temperature CO oxidation over Fe–Co mixed oxide nanocatalysts,” Chemical Engineering Journal, Vol. 184, pp. 141–146, 2012.
[25]Yang Lou, Jian Ma, Xiaoming Cao, Li Wang, Qiguang Dai, Zhenyang Zhao, Yafeng Cai, Wangcheng Zhan, Yanglong Guo, P. Hu, Guanzhong Lu, and Yun Guo, “Promoting effects of In2O3 on Co3O4 for CO oxidation: Tuning O2 activation and CO adsorption strength simultaneously,” ACS Catal., Vol. 4, pp. 4143−4152, 2014.
[26]Sang Wook Han, Dae Han Kim, Myung-Geun Jeong, Ki Jung Park and, Young Dok Kim, “CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature,” Chemical Engineering Journa, Vol. 283, pp. 992–998, 2016.
[27]Seungwon Lee, Jung-Soo Kang, Kam Tong Leung, Seog K. Kim and, Youngku Sohn , “Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications,” Applied Surface Science, Vol. 386, pp. 393–404, 2016.
[28]Myung-Geun Jeong, Il Hee Kim, Sang Wook Han, Dae Han Kim and, Young Dok Kim, “Room temperature CO oxidation catalyzed by NiO particles on mesoporous SiO2 prepared via atomic layer deposition: Influence of pre-annealing temperature on catalytic activity,” Journal of Molecular Catalysis A: Chemical, Vol. 414, pp. 87–93, 2016.
[29]Tomás Ramírez Reina, Svetlana Ivanova, Vasko Idakiev, Tatyana Tabakova, Miguel Angel Centeno, Qing-Fang Deng, Zhong-Yong Yuan and, José Antonio Odriozola , “Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions,” Journal of Molecular Catalysis A: Chemical, Vol. 414, pp. 62–71, 2016.
[30]Yunbo Yu, Takashi Takei, Hironori Ohashi, Hong He, Xiuli Zhang and, Masatake Haruta , “Pretreatments of Co3O4 at moderate temperature for CO oxidation at −80 °C,” Journal of Catalysis, Vol. 267, pp. 121–128, 2009.
[31]Shuai Lv, Guofu Xia, Chao Jin, Chunyu Hao, Li Wang, Jinlin Li, Yuhua Zhang and, Jun Jiang Zhu, “Low-temperature CO oxidation by Co3O4 nanocubes on the surface of Co(OH)2 nanosheets,” Catalysis Communications, Vol. 86, pp. 100–103, 2009.
[32]Chung-Hao Kuo, Weikun Li, Wenqiao Song, Zhu Luo, Altug S. Poyraz, Yang Guo, Anson W. K. Ma, Steven L. Suib, and, Jie He, “Facile synthesis of Co3O4@cnt catalytic activity for CO oxidation under moisture-rich conditions,”ACS Applied Materials & Interfaces, Vol. 6, pp. 11311–11317, 2014.
[33]Changxiang Liu, Qian Liu, Ling Bai, Aiqin Dong, Guangbin Liu and, Shihe Wen, “Structure and catalytic performances of nanocrystalline Co3O4 catalysts for low temperature CO oxidation prepared by dry and wet synthetic routes,” Journal of Molecular Catalysis A: Chemical, Vol. 370, pp. 1–6, 2013.
[34]Abolfazl Biabani-Ravandi, Mehran Rezaei and, Zohreh Fattah, “Low-temperature CO oxidation over nanosized Fe–Co mixed oxide catalysts: Effect of calcination temperature and operational conditions,” Chemical Engineering Science, Vol. 94, pp. 237–244, 2013.
[35]Hailong Li, Ke Yu, Chao Wan, Junjiang Zhu, Xiu Li, Shuo Tong and, Yanxi Zhao, “Comparison of the nickel addition patterns on the catalytic performances of LaCoO3 for low-temperature CO oxidation,” Catalysis Today, Vol. 281, pp. 534–541, 2017.
[36]Jitendra Kumar, Goutam Deo and, Deepak Kunzru , “Preferential oxidation of carbon monoxide on Pt/γ-Al2O3 catalyst: Effect of adding ceria and nickel,” International Journal of Hydrogen Energy, Vol. 41, pp. 18494 –18501, 2016.
[37]Yuan Gao, Fanhui Meng, Keming Ji, Yan Song and, Zhong Li, “Slurry phase methanation of carbon monoxide over nanosized Ni–Al2O3 catalysts prepared by microwave-assisted solution,” Applied Catalysis A: General, Vol. 510, pp. 74–83, 2016.
[38]羅聖全,“科學基礎研究之重要利器—掃瞄式電子顯微鏡 (SEM)”,科學研習,第52卷,第5期,第2 - 4頁,2013。
[39]Jianchao Chen, Haiwei Du, Jinhua Zhang, Xinrong Lei, Ying Wang, Shi Su, Zhanhui Zhang, and Pei Zhao, “Influence of deposition temperature on crystalline structure and morphologies of Co3O4 films prepared by a direct liquid injection chemical vapor deposition,” Surface & Coatings Technology, Vol. 319, pp. 110–116, 2017.
[40]Zhao-Qing Liu, Kang Xiao, Qi-Zhi Xu, Nan Li, Yu-Zhi Su, Hong-Juan Wanga, and Shuang Chen, “Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties,” RSC Advances, Vol. 3, pp. 4372–4380, 2013.
[41]F. PECHAR, and D. RYKL, “Raman polarization spectra of the natural zeolite analcime,” Qiem. Zvestí , Vol. 35, pp 45–50, 1981.
[42]M.N. Iliev, P. Silwal, B. Loukya, R. Datta, D.H. Kim, N.D. Todorov, N. Pachauri, and A. Gupta, “Raman studies of cation distribution and thermal stability of epitaxial spinel NiCo2O4 films,” J. Appl. Phys., Vol. 114, pp.033514, 2013.
[43]Ediga Umeshbabu, G. Rajeshkhanna, Ponniah Justin, and G. Ranga Rao, “Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures,” Materials Chemistry and Physics, Vol. 165, pp.235–244, 2015.
[44]Chih-Wei Tang, Chen-Bin Wang, and Shu-Hua Chien, “Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS,” Thermochimica Acta, Vol. 473, pp.68–73, 2008.
[45]Jianfeng Shen, Xianfu Li, Na Li, and Mingxin Ye, “Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties,” Electrochimica Acta, Vol. 141, pp.126–133, 2014.
[46]Mahesh Muraleedharan Nair, Hoang Yen, and Freddy Kleitz, “Nanocast mesoporous mixed metal oxides for catalytic applications,” C. R. Chimie, Vol. 17, pp.641–655, 2014.
[47]Hong-Paul Wang, and Chuin-Tih Yeh, “On the reduction of copper oxide,” J. Chine Chem, Vol. 30, pp.139–143, 1983.
[48]Kuen-Song Lin, Abhijit Krishna Adhikari, Zong-Yan Tsai, Yu-Pei Chen, Tzu-Ting Chien, and Hung-Bin Tsai, “Synthesis and characterization of nickel ferrite nanocatalysts for CO2 decomposition,” Catalysis Today, Vol. 174, pp88–96, 2011.
[49]馬令娟、陳林深、陳誦英,“製備工藝對NiFe2O4分解CO2活性的影響”,無機化學學報,第23卷,第2期,第329-334頁,2007。
[50]Barbara Kucharczyk, Włodzimierz Tylus, Janina Okal, Jacek Checmanowski, and Bogdan Szczygie, “The Pt-NiO catalysts over the metallic monolithic support for oxidation of carbon monoxide and hexane,” Chemical Engineering Journal,Vol. 309, pp. 288–297, 2017.
[51]Debao Wang, Haitao Yu, Yibiao Zhu, and Caixia Song, “NiO nanosheets rooting into Ni-doped CeO2 microspheres for high performance of CO catalytic oxidation,” Materials Letters, Vol. 198, pp.168–171, 2017.
[52]Yi Shen, and Aik Chong Lua, “Sol–gel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition,” RSC Advances, Vol. 4, pp.42159–42167, 2014.
[53]Luu Cam Loc, Nguyen Manh Huan, Nguyen Kim Dung, Nguyen Huu Huy Phuc, and Ho Si Thoang, “A study on methanation of carbon monoxide over catalysts NiO/TiO2 and NiO/γ-Al2O3,” Advances in Natural Sciences, Vol. 7, pp.91–105, 2006.
[54]Jie Liu, Changming Li, Fei Wang, Shan He, Hao Chen, Yufei Zhao, Min Wei, David G. Evans, and Xue Duan, “Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst,” Catalysis Science & Technology, Vol. 3, pp.2627–2633, 2013.
[55]Huaqing Zhu, Zhangfeng Qin, Wenjuan Shan, Wenjie Shen, and Jianguo Wang, “Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents,” Journal of Catalysis, Vol. 225, pp.267–277, 2004.
[56]CHEN Rizhi, DU Yan, XING Weihong, and XU Nanping, “The effect of titania structure on Ni/TiO2 catalysts for p-Nitrophenol hydrogenation,” Chinese J. Chem. Eng., Vol. 14, pp.665–669, 2006.
[57]Bin Xu, Lin Dong, Yining Fan, and Yi Chen, “A study on the dispersion of NiO and/or WO3 on anatase,” Journal of Catalysis, Vol. 193, pp.88–95, 2000.
[58]William S. HummersJr., and Richard E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., Vol. 80 , pp.1339, 1958.
[59]Chao Xu, Xin Wang, and Junwu Zhu, “ Graphene metal particle nanocomposites,” J. Phys. Chem. C, Vol. 112, pp.19841–19845, 2008.
[60]Thomas N. Blanton, and Debasis Majumdar, “Characterization of X-ray irradiated graphene oxide coatings using X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy,” JCPDS-International Centre for Diffraction , pp. 116–122, 2013.
[61]Thomas N. Blanton, and Debasis Majumdar, “X-ray diffraction characterization of polymer intercalated graphite oxide,” JCPDS-ICDD,Vol. 27, pp.104–107, 2012.
[62]潘書剛、劉孝恒,“水熱法合成石墨烯-硫化鋅複合物及其光學性質研究”,2012 年兩岸環境與能源研討會暨第一屆全球華人環境與能源研討會論文集,新竹,第184-192頁,2012。
[63]Milan Janaa, Sanjit Saha, Partha Khanrc, Naresh Chandra Murmu, Suneel Kumar Srivastava, Tapas Kuila, and Joong Hee Lee, “Bio-reduction of graphene oxide using drained water from soaked mung beans (Phaseolus aureus L.) and its application as energy storage electrode material,” Materials Science and Engineering B, Vol. 186, pp. 33–40, 2014.
[64]L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, “Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods,” Journal of Electron Spectroscopy and Related Phenomena, Vol. 195, pp.145–154, 2014.
[65]Balaraman Sathyaseelan, Iruson Baskaran, and Kandasamy Sivakumar, “Phase transition behavior of nanocrystalline Al2O3 powders,” Soft Nanoscience Letters, Vol. 3, pp.69–74, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔