跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉明嘉
研究生(外文):Ming-Chia Liu
論文名稱:製作指叉型場發射平面燈源及數字顯示器
論文名稱(外文):Fabrication of interdigitated field emission lighting device and seven segment display
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
口試委員:游孟潔曾俊龍
口試委員(外文):Meng-Chieh YuChun-Lung Tseng
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:295
中文關鍵詞:奈米碳管場發射螢光粉
外文關鍵詞:Carbon nanotubeField emissionPhosphor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究 利用側向激發之新穎式場發射概念製作指叉型場發射平面燈源,藉由Spacer高度與電場控制電極兩參數的調控下可以改變場發射電子束的路徑,因而影響場發射能力。
在結構方面,測試相同參數下整面發射源之單層導電層與雙層導電層結構對場發射的影響,並以Simion模擬解釋其結果,發現在雙層導電層結構有較好的場發射表現。接著繼續利用整面發射源-雙層導電層結構測試在不同Spacer高度與電場控制電極下的輝度值以及裝設有擴散膜下的均勻度,發現於Spacer高度7.8 mm搭配電場控制電極為+200 V下有最佳之亮度與均勻性,並且以Simion模擬解釋其結果。接著再以Spacer高度7.8 mm以及電場控制電極+200 V為參數測量半面發射源結構之場發射結果,發現在相同參數下,此結構擁有最佳的場發射表現,於陽極電壓3400 V下,輝度值高達19210 nits,若在裝有擴散膜下的情況,其輝度值也可高達8325 nits,且其均勻度為93.7 %。
將側向轟擊的概念應用於製作Seven-segment數字顯示器元件,利用Spacer高度4.8 mm以及電場控制電極+200 V下使用整面發射源-雙層導電層結構測量發現於電壓5000 V時,其輝度值高達5000至9000 多nits。
關鍵字:奈米碳管、場發射、螢光粉

The field emission planar lighting device and seven-segment field emission display were studied. The lighting devices were with a interdigitated cathode and anode structure which allowed lateral electron bombardment to the phosphors. The experiment parameters in the study of lighting device included the voltages, height of spacers, DC/AC operation and the voltages of electric field control electrode, which is a parallel plate to the planar cathode-anode structure. The result shows a maximum luminance of 19210 nits with the uniformity of 93.7 % can be achieved with the anique structure and an optimal operational condition. Seven-segment display with a designed planar structure was studied. The luminance of the seven-segment display is in the range of 5000-9000 nits.





Key word: Carbon nanotube、Field emission、Phosphor

致謝 I
中文摘要 III
Abstract IV
目錄 V
表目錄 IX
圖目錄 XI
第一章、緒論 1
1-1 前言 1
1-2 場發射介紹與應用 4
1-2-1 場發射原理 4
1-2-2 場發射元件之探討 9
1-2-2-1 Spindt型場發射元件 10
1-2-2-2 表面傳導電子型場發射元件 12
1-2-2-3 彈道電子表面發射型場發射元件 14
1-2-2-4 奈米碳管型場發射元件 16
1-2-3 場發射元件之應用 18
1-2-3-1 場發射燈源(Field Emission Lamp,FEL) 18
1-2-3-2 場發射顯示器(Field Emission Display,FED) 19
1-2-3-3 場發射電子顯微鏡(Field Emission Electron Microscopy) 20
1-2-3-4 氣體感測器(Pressure Sensor) 21
1-3 奈米碳管介紹與應用 23
1-3-1 奈米碳管簡介 23
1-3-2 奈米碳管特性之探討 24
第二章、文獻回顧 27
2-1 陰極場發射源 27
2-1-1 金屬氧化物奈米線材作為場發射源 29
2-1-1-1 金屬氧化物奈米線材作為場發射源介紹 29
2-1-1-2 金屬氧化物奈米線材作為場發射源文獻比較 33
2-1-2 奈米碳材作為場發射源 36
2-1-2-1 奈米碳材作為場發射源介紹 36
2-1-2-2 奈米碳材作為場發射源文獻比較 44
2-2 場發射元件 48
2-2-1 二極式場發射元件 49
2-2-1-1 二極式場發射元件介紹與應用 49
2-2-1-2 二極式場發射元件文獻比較 54
2-2-2 三極式場發射元件 57
2-2-2-1 三極式場發射元件介紹與應用 57
2-2-2-2 三極式場發射元件文獻比較 63
2-2-3 側向激發之平面結構 67
2-2-3-1 側向激發之平面結構介紹與應用 67
2-3 電腦模擬場發射行為 70
2-4 研究目的與動機 73
第三章、實驗步驟與研究方法 75
3-1 實驗架構 75
3-2 實驗裝置 80
3-3 實驗藥品及耗材 84
3-4 實驗步驟 86
3-4-1 指叉型場發射平面燈源 86
3-4-1-1 指叉型平面燈源元件製作之實驗步驟 86
3-4-1-2 指叉型元件網印結構圖 91
3-4-1-3 指叉型平面燈源場發量測之實驗步驟 95
3-4-2 數字顯示器 98
3-4-2-1 數字顯示器元件製作之實驗步驟 98
3-4-2-2 數字顯示器網印結構圖 102
3-4-2-3 數字顯示器場發量測之實驗步驟 105
3-5 實驗檢測儀器 107
第四章、指叉型平面燈源之結果與討論 109
4-1 整面發射源-單層導電層結構之探討 113
4-1-1 整面發射源-單層導電層結構之表面分析 115
4-1-1-1 不同層數堆疊之表面型態分析 115
4-1-1-2 X光能量散射光譜儀(EDS-Mapping/Line scan) 122
4-1-2 整面發射源-單層導電層結構之直流電場發射分析 124
4-1-2-1 Spacer高度4.8 mm ∕電場控制電極 -200 V且無擴散膜 125
4-1-2-2 Spacer高度4.8 mm ∕電場控制電極 +200 V且無擴散膜 129
4-1-3 整面發射源-單層導電層結構之Simion模擬 133
4-1-4 整面發射源-單層導電層結構之實驗小結 136
4-2 整面發射源-雙層導電層結構之探討 139
4-2-1 整面發射源-雙層導電層結構之表面型態與內部結構分析 141
4-2-1-1 不同層數堆疊之表面型態分析 141
4-2-1-2 內部結構分析 148
4-2-1-3 X光能量散射光譜儀(EDS-Mapping/Line scan) 152
4-2-2 整面發射源-雙層導電層結構之直流電場發射分析 154
4-2-2-1 Spacer高度4.8 mm ∕電場控制電極 -200 V且無擴散膜 155
4-2-2-2 Spacer高度4.8 mm ∕電場控制電極 0 V且無擴散膜 159
4-2-2-3 Spacer高度4.8 mm ∕電場控制電極 +200 V且無擴散膜 163
4-2-2-4 整面發射源-雙層導電層固定Spacer高度無擴散膜之小結 167
4-2-2-5 Spacer高度4.8 mm ∕電場控制電極 -200 V且有擴散膜 169
4-2-2-6 Spacer高度4.8 mm ∕電場控制電極 0 V且有擴散膜 174
4-2-2-7 Spacer高度4.8 mm ∕電場控制電極 +200 V且有擴散膜 179
4-2-2-8 整面發射源-雙層導電層固定Spacer高度有擴散膜之小結 184
4-2-2-7 Spacer高度1.8 mm ∕電場控制電極 +200 V且無擴散膜 185
4-2-2-8 Spacer高度1.8 mm ∕電場控制電極 +200 V且有擴散膜 189
4-2-2-9 Spacer高度7.8 mm ∕電場控制電極 +200 V且無擴散膜 193
4-2-2-10 Spacer高度7.8 mm ∕電場控制電極 +200 V且有擴散膜 197
4-2-2-11 Spacer高度10 mm ∕電場控制電極 +200 V且無擴散膜 202
4-2-2-12 Spacer高度10 mm ∕電場控制電極 +200 V且有擴散膜 206
4-2-2-13 整面發射源-雙層導電層固定電場控制電極電壓之小結 211
4-2-3 整面發射源-雙層導電層結構之Simion模擬 214
4-2-4-1 不同電場控制電壓在固定Spacer高度下之模擬 215
4-2-4-2 不同Spacer高度在固定電場控制電極下之模擬 221
4-2-4 整面發射源-雙層導電層結構之交流電場發射分析 228
4-2-3-1 Spacer高度7.8 mm ∕電場控制電極 +200 V且無擴散膜 229
4-2-3-2 Spacer高度7.8 mm ∕電場控制電極 +200 V且有擴散膜 233
4-2-5 整面發射源-雙層導電層結構之實驗小結 239
4-3 半面發射源結構之探討 240
4-3-1半面發射源結構之表面分析 242
4-3-2 半面發射源結構之直流電場發射分析 245
4-3-2-1 Spacer高度7.8 mm ∕電場控制電極 +200 V且無擴散膜 246
4-3-2-2 Spacer高度7.8 mm ∕電場控制電極 +200 V且有擴散膜 250
4-3-3 半面發射源結構之實驗小結 255
4-4 指叉型場發射平面燈源之實驗總結 256
第五章、數字顯示器之結果與討論 262
5-1 Seven-segment概述 262
5-2 Seven-segment直流電場發射測試 264
5-3 數字顯示器之實驗總結 281
第六章、總結與未來展望 282
6-1 總結 282
6-2 未來展望 284
參考文獻 285
附錄 293
附錄A 熱效應對指叉型場發射元件的影響 293
附錄B 擴散膜的表面型態及元素分析 295



[1]Iijima S. Helical microtubules of graphitic carbon,. Nature. 1991;354(6348):P.56 - 8.
[2]Cheng Y, Zhou O. Electron field emission from carbon nanotubes. Comptes Rendus Physique. 2003;4(9):1021-33.
[3]Fowler RH NL. Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London Series A,. Containing Papers of a Mathematical and Physical Character. 1928;119(781):173-81.
[4]Spindt CA. A Thin-Film Field-Emission Cathode. J Appl Phys. 1968;39(7):3504-5.
[5]Kim YS, Kim YG, Kim DI, Kang JG, Kang SO, Choi EH, et al. Influence of inertial force on electron trajectories in the surface conduction electron emitter displays. Japanese Journal of Applied Physics Part 2-Letters. 2000;39(7A):L684-L6.
[6]Nakajima Y, Kojima A, Toyama H, Koshida N. A solid-state light-emitting device based on excitations of ballistic electrons generated in nanocrystalline porous polysilicon films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2002;41(4B):2707-9.
[7]Sathe BR, Kakade BA, Kushwaha A, Aslam M, Pillai VK. Synthesis of Rh-carbon nanotube based heterostructures and their enhanced field emission characteristics. Chemical Communications. 2010;46(31):5671-3.
[8]Choi YC, Kang JT, Park S, Go E, Jeon H, Kim JW, et al. High performance field emission and Nottingham effect observed from carbon nanotube yarn. Physica E-Low-Dimensional Systems & Nanostructures. 2017;86:52-7.
[9]Talin AA, Dean KA, Jaskie JE. Field emission displays: a critical review. Solid-State Electronics. 2001;45(6):963-76.
[10]Honda Y, Nanba M, Miyakawa K, Kubota M, Nagao M, Neo Y, et al. Electrostatic-focusing image sensor with volcano-structured Spindt-type field emitter array. Journal of Vacuum Science & Technology B. 2016;34(5).
[11]Yamamoto K, Oguchi T, Sasaki K, Nomura I, Uzawa S, Hatanaka K. Fabrication and characterization of surface-conduction electron emitters for SED application. Journal of the Society for Information Display. 2006;14(1):73-9.
[12]Li Y, Cheng HW. Field emission dependence on the tilted angle of palladium nanogaps for surface conduction electron-emitter displays. Micro & Nano Letters. 2009;4(2):69-73.
[13]Lee J, Jung Y, Song J, Kim JS, Lee GW, Jeong HJ, et al. High-performance field emission from a carbon nanotube carpet. Carbon. 2012;50(10):3889-96.
[14]Shin DH, Jung SI, Yun KN, Chen GH, Song YH, Saito Y, et al. Field emission properties from flexible field emitters using carbon nanotube film. Applied Physics Letters. 2014;105(3).
[15]Li ZJ, Yang XX, He F, Bai B, Zhou H, Li C, et al. High current field emission from individual non-linear resistor ballasted carbon nanotube cluster array. Carbon. 2015;89:1-7.
[16]Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Japanese Journal of Applied Physics Part 2-Letters. 1998;37(3B):L346-L8.
[17]Wei Y, Xiao L, Zhu F, Liu L, Tang J, Liu P, et al. Cold linear cathodes with carbon nanotube emitters and their application in luminescent tubes. Nanotechnology. 2007;18(32).
[18]Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, et al. Application of carbon nanotubes to field emission displays. Diamond and Related Materials. 2001;10(2):265-70.
[19]Badi N, Bensaoula A, Nair AM. Dynamic range and sensitivity of field emission pressure sensors with non-silicon membranes. Applied Surface Science. 2013;285:907-11.
[20]Lee H, Goak J, Choi J, Kong B, Lee CH, Kim KB, et al. High-current field emission of point-type carbon nanotube emitters on Ni-coated metal wires. Carbon. 2012;50(6):2126-33.
[21]Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes - the route toward applications. Science. 2002;297(5582):787-92.
[22]Thostenson ET, Ren ZF, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology. 2001;61(13):1899-912.
[23]C.A. Spindt IB, L. Humphrey, E.R. Westerberg,. Physical-properties of thin-film field-emission cathodes with molybdenum cones. J Appl Phys. 1976;47(12):5248-63.
[24]Chen L, El-Gomati MM. Field emission studies of tungsten-coated silicon-based field emitters. Ultramicroscopy. 1999;79(1-4):135-40.
[25]Thong JTL, Oon CH, Eng WK, Zhang WD, Gan LM. High-current field emission from a vertically aligned carbon nanotube field emitter array. Applied Physics Letters. 2001;79(17):2811-3.
[26]Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters. 2002;81(19):3648-50.
[27]Li SY, Lin P, Lee CY, Tseng TY. Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process. Journal of Applied Physics. 2004;95(7):3711-6.
[28]Wu MS, Lee JT, Wang YY, Wan CC. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition. Journal of Physical Chemistry B. 2004;108(42):16331-3.
[29]Lin JC, Huang BR, Lin TC. Hybrid structure of graphene sheets/ZnO nanorods for enhancing electron field emission properties. Applied Surface Science. 2014;289:384-7.
[30]Cui YK, Chen J, Zhang XB, Lei W, Di YS, Wang QL. Flexible Field Emission Devices Based on Barium Oxide Nanowires. Journal of Display Technology. 2016;12(5):466-71.
[31]張凱翔. 以熱氧化法製備海膽狀錳/一氧化錳/三氧化二錳核殼結構及其在場發射之應用. 國立中正大學化學工程研究所碩士論文. 2016.
[32]Chouhan V, Noguchi T, Kato S. Field emission from optimized structure of carbon nanotube field emitter array. Journal of Applied Physics. 2016;119(13).
[33]Shin DH, Yun KN, Jeon SG, Kim JI, Saito Y, Milne WI, et al. High performance field emission of carbon nanotube film emitters with a triangular shape. Carbon. 2015;89:404-10.
[34]W.A. Deheer ACaDU. A carbon nanotube field-emission electron source. Science. 1995;270:1179-80.
[35]Yu J, Zhang Q, Ahn J, Yoon SF, Rusli, Li YJ, et al. Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition. Diamond and Related Materials. 2001;10(12):2157-60.
[36]Subramanian K, Wong Y, Kang WP, Davidson JL, Choi BK, Howell M. Field emission devices for advanced electronics comprised of lateral nanodiamond or carbon nanotube emitters. Diamond and Related Materials. 2007;16(12):1997-2002.
[37]Shahi M, Gautam S, Shah PV, Jha P, Kumar P, Rawat JS, et al. Effect of purity, edge length, and growth area on field emission of multi-walled carbon nanotube emitter arrays. Journal of Applied Physics. 2013;113(20).
[38]Chen LF, He H, Yu H, Cao YQ, Lei D, Menggen Q, et al. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter. Journal of Alloys and Compounds. 2014;610:659-64.
[39]Li JT, Lei W, Zhang XB, Zhou XD, Wang QL, Zhang YN, et al. Field emission characteristic of screen-printed carbon nanotube cathode. Applied Surface Science. 2003;220(1-4):96-104.
[40]Lee HJ, Lee YD, Il Moon S, Cho WS, Lee YH, Kim JK, et al. Enhanced surface morphologies of screen-printed carbon nanotube films by heat treatment and their field-emission properties. Carbon. 2006;44(13):2625-30.
[41]Cheng CW, Chen CM, Lee YC. Laser surface treatment of screen-printed carbon nanotube emitters for enhanced field emission. Applied Surface Science. 2009;255(11):5770-4.
[42]Qian M, Feng T, Wang K, Ding H, Chen YW, Sun Z. A comparative study of field emission properties of carbon nanotube films prepared by vacuum filtration and screen-printing. Applied Surface Science. 2010;256(14):4642-6.
[43]Xu JZ, Feng T, Chen YW, Sun Z. Field Emission Properties of the Graphene Double-Walled Carbon Nanotube Hybrid Films Prepared by Vacuum Filtration and Screen Printing. Journal of Nanomaterials. 2013.
[44]Murakami H, Hirakawa M, Tanaka C, Yamakawa H. Field emission from well-aligned, patterned, carbon nanotube emitters. Applied Physics Letters. 2000;76(13):1776-8.
[45]Jeong T, Heo J, Lee J, Park S, Jin Y, Kim JM, et al. Field emission from carbon nanotube emitters fabricated by the metal intermediation layer. Journal of Applied Physics. 2006;100(6).
[46]Tsai WH, Chang CC, Wu HJ. Field Emission Properties of Spiral Pattern by Screen Printing. Japanese Journal of Applied Physics. 2013;52(11).
[47]Khare RT, Gelamo RV, More MA, Late DJ, Rout CS. Enhanced field emission of plasma treated multilayer graphene. Applied Physics Letters. 2015;107(12).
[48]Chen SL, Ying PZ, Wang L, Wei GD, Gao FM, Zheng JJ, et al. Highly flexible and robust N-doped SiC nanoneedle field emitters. Npg Asia Materials. 2015;7.
[49]Sohn JI, Lee S, Song YH, Choi SY, Cho KI, Nam KS. Large field emission current density from well-aligned carbon nanotube field emitter arrays. Current Applied Physics. 2001;1(1):61-5.
[50]Lee JH, Lee SH, Kim WS, Lee HJ, Heo JN, Jeong TW, et al. Current degradation mechanism of single wall carbon nanotube emitters during field emission. Applied Physics Letters. 2006;89(25).
[51]Chen GH, Neupane S, Li WZ. Electron field emission properties of vertically aligned carbon nanotube point emitters. Diamond and Related Materials. 2012;25:134-8.
[52]Sun Y, Yun KN, Leti G, Lee SH, Song YH, Lee CJ. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler. Nanotechnology. 2017;28(6).
[53]Yu K, Zhang YS, Xu F, Li Q, Zhu ZQ, Wan Q. Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed carbon nanotube films. Applied Physics Letters. 2006;88(15).
[54]Seelaboyina R, Boddepalli S, Noh K, Jeon M, Choi A. Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology. 2008;19(6).
[55]Chang HC, Li CC, Jen SF, Lu CC, Bu IYY, Chiu PW, et al. All-carbon field emission device by direct synthesis of graphene and carbon nanotube. Diamond and Related Materials. 2013;31:42-6.
[56]Wu HC, Youh MJ, Lin WH, Tseng CL, Juan YM, Chuang MH, et al. Fabrication of double-sided field-emission light source using a mixture of carbon nanotubes and phosphor sandwiched between two electrode layers. Carbon. 2012;50(13):4781-6.
[57]Sun Y, Song Y, Shin DH, Yun KN, Jeon SG, Kim JI, et al. Fabrication of carbon nanotube emitters on the graphite rod and their high field emission performance. Applied Physics Letters. 2014;104(4).
[58]Shiratori Y, Furuichi K, Noda S, Sugime H, Tsuji Y, Zhang Z, et al. Field emission properties of single-walled carbon nanotubes with a variety of emitter morphologies. Japanese Journal of Applied Physics. 2008;47(6):4780-7.
[59]Ding MQ, Shao WS, Li XH, Bai GD, Zhang FQ, Li HY, et al. Approach for fabricating microgated field-emission arrays with individual carbon nanotube emitters. Applied Physics Letters. 2005;87(23).
[60]Choi YC, Lee JW, Lee SK, Kang MS, Lee CS, Jung KW, et al. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit. Nanotechnology. 2008;19(23).
[61]Liu P, Wei Y, Liu K, Liu L, Jiang KL, Fan SS. New-Type Planar Field Emission Display with Superaligned Carbon Nanotube Yarn Emitter. Nano Letters. 2012;12(5):2391-6.
[62]Kwon SJ, Lee SH. Field emission characteristics depending on emitter patterns of a screen-printed carbon nanotube field emission array. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers. 2006;45(1A):355-8.
[63]Wu CX, Li FS, Zhang YG, Guo TL. Improving the field emission of graphene by depositing zinc oxide nanorods on its surface. Carbon. 2012;50(10):3622-6.
[64]Jeong HJ, Choi HK, Kim GY, Il Song Y, Tong Y, Lim SC, et al. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon. 2006;44(13):2689-93.
[65]Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, et al. Fully sealed, high-brightness carbon-nanotube field-emission display. Applied Physics Letters. 1999;75(20):3129-31.
[66]Guo PS, Chen T, Chen YW, Zhang ZJ, Feng T, Wang LL, et al. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters. Solid-State Electronics. 2008;52(6):877-81.
[67]Chen G, Shin DH, Roth S, Lee CJ. Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn. Nanotechnology. 2009;20(31).
[68]Jung JE, Jin YW, Choi JH, Park YJ, Ko TY, Chung DS, et al. Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays. Physica B-Condensed Matter. 2002;323(1-4):71-7.
[69]Choi YS, Kang JH, Park YJ, Choi WB, Lee CJ, Jo SH, et al. An under-gate triode structure field emission display with carbon nanotube emitters. Diamond and Related Materials. 2001;10(9-10):1705-8.
[70]Kim YC, Yoo EH. Printed carbon nanotube field emitters for backlight applications. Japanese Journal of Applied Physics Part 2-Letters & Express Letters. 2005;44(12-15):L454-L6.
[71]Ito F, Tomihari Y, Okada Y, Konuma K, Okamoto A. Carbon-nanotube-based triode-field-emission displays using gated emitter structure. Ieee Electron Device Letters. 2001;22(9):426-8.
[72]Zhang YA, Lin JY, Guo TL. Fabrication and properties of film-under-gate field emission arrays with SnO2 emitters for flat lamp. Applied Surface Science. 2010;257(1):306-11.
[73]Huh Y, Lee JY, Lee CJ. Growth of vertically aligned carbon nanotube emitters on patterned silicon trenches for field emission applications. Thin Solid Films. 2005;475(1-2):267-70.
[74]Ferrer D, Tanii T, Matsuya I, Zhong G, Okamoto S, Kawarada H, et al. Enhancement of field emission characteristics of tungsten emitters by single-walled carbon nanotube modification. Applied Physics Letters. 2006;88(3).
[75]Wu J, Wyse M, McClain D, Thomas N, Jiao J. Fabrication and Field Emission Properties of Triode-Type Carbon Nanotube Emitter Arrays. Nano Letters. 2009;9(2):595-600.
[76]Yang YC, Qian L, Tang J, Liu L, Fan SS. A low-vacuum ionization gauge with HfC-modified carbon nanotube field emitters. Applied Physics Letters. 2008;92(15).
[77]Cho WS, Lee HJ, Lee YD, Park JH, Kim JK, Lee YI, et al. Carbon nanotube-based triode field emission lamps using metal meshes with spacers. Ieee Electron Device Letters. 2007;28(5):386-8.
[78]Jensen KL, MukhopadhyayPhillips P, Zaidman EG, Nguyen K, Kodis MA, Malsawma L, et al. Electron emission from a single spindt-type field emitter: Comparison of theory with experiment. Applied Surface Science. 1997;111:204-12.
[79]Jung YJ, Son GH, Park JH, Kim YW, Berdinsky AS, Yoo JB, et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp. Diamond and Related Materials. 2005;14(11-12):2109-12.
[80]Zhang Y, Deng SZ, Xu NS, Chen J. Fully sealed carbon nanotube flat-panel light source and its application as thin film transistor-liquid-crystal display backlight. Journal of Vacuum Science & Technology B. 2008;26(3):1033-7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊