(3.236.118.225) 您好!臺灣時間:2021/05/17 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:史妮達
研究生(外文):Asnidar Siahaan
論文名稱(外文):Decoration of Au-Pt nanoparticles on tubular graphene architectures for the enhancement of electrocatalytic performance in direct methanol fuel cells
指導教授:許佳振
指導教授(外文):Chia-Chen Hsu
口試委員:甘宏志謝雅萍謝馬利歐
口試委員(外文):Hung-Chih KanYa-Ping HsiehMario Hofmann
口試日期:2017-01-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:60
外文關鍵詞:Graphene tubeAu-Pt nanoparticleMethanol oxidationDirect methanol fuel cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
In this work, tubular graphene architectures as supporting materials for the decoration of Au-Pt nanoparticles (NPs) can enhance the electrocatalytic activity in direct methanol fuel cells. Au-Pt heterostructures were successfully decorated on tubular graphene surface with different concentrations and used as electrocatalysts for methanol oxidation. The activities of electrocatalysts were strongly improved in the presence of Au-Pt NPs, which were evidenced by the increase of the forward peak current densities in the cyclic voltammetry (CV) curves. Furthermore, the enhancement of the ratios between the forward and backward peak current densities of the CV curves shows the good tolerant ability towards the poisoning effect of intermediate carbonaceous species. The morphology and properties of Au-Pt decorated tubular graphene structures were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electrochemical measurements and Raman spectroscopy techniques. The goal of the research is using tubular graphene meshes as supporting materials for enhancing the electrocatalytic in direct methanol fuel cells.

Keywords : Graphene tube, Au-Pt nanoparticles, methanol oxidation, direct methanol fuel cell, Electrocatalyst

Acknowledgements i
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables ix
CHAPTER 1 INTRODUCTION 1
1.1 Graphene properties and applications 1
1.2 Graphene in Direct Methanol Fuel Cells (DMFCs) 4
1.2.1 The basic working principle of direct methanol fuel cells 4
1.2.2 Supporting materials for noble metal in DMFCs 5
1.3 Au-Pt-Graphene heterostructures 10
1.4 Research motivation 14
CHAPTER 2 EXPERIMENTAL SECTION 15
2.1 Sample preparations 15
2.1.1 Fabrication of Tubular graphene (TG) woven structures 15
2.1.2 Fabrication of Pt@TG heterostructures 16
2.1.3 Fabrication of Pt@TG heterostructures 17
2.1.4 Fabrication of Au-Pt@TG heterostructures 19
2.2 Characterization 21
2.2.1 Field Emission Scanning Electron (FESEM) 21
2.2.2 Energy-Dispersive X-ray (EDX) 22
2.2.3 X-ray Diffraction (XRD) 23
2.2.4 Transmission Emission Microscopy (TEM) 23
2.2.5 Raman spectroscopy 25
2.2.6 X-ray photoelectron spectroscopy (XPS) 26
2.2.7 Electrochemical measurements 28
CHAPTER 3 RESULTS AND DISCUSSION 30
3.1 Characterization of Tubular graphene (TG) woven structures 30
3.2 Characterization of Au@TG heterostructures 33
3.3 Characterization of Pt@TG heteostructures 39
3.4 Characterization of Au-Pt@TG heterostructures 40
3.4.1 Morphology of Au-Pt@TG 40
3.4.2 Cyclic Voltammetry (CVs) analysis of Au-Pt@TG 46
CHAPTER 4 CONCLUSIONS 51
REFERENCES 52


[1] Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature materials. 2007, 6, 183-191.
[2] Antolini, E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B : Enviromental. 2012, 123, 52-68.
[3] Hass, J.; De Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. Journal of Physics : Condensed Matter. 2008, 20, 323202.
[4] Shang, N.; Papakonstantinou, P.; Wang, P.; Silva, S.R.P. Platinum integrated graphene for methanol fuel cells. The Journal of Physical Chemistry C. 2010, 114, 15837-15841.
[5] Nguyen, D.D.; Suzuki, S.; Kato, S.; to, BD.; Hsu, C.C.; Murata, H.; rokuta, E.; Tai, N.H.; Yoshimura, M. Macroscopic, Freestanding, and Tubular Graphene Architectures Fabricated via Thermal Annealing. ACS nano. 2015, 9, 3206-3214.
[6] Zhao, J.; Zhang, L.; Chen, T.; Yu, H.; Zhang, L.; Xue, H.; Hu, H. Supercritical carbon-dioxide-assisted deposition of Pt nanoparticles on graphene sheets and their application as an electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C. 2012, 116, 21374-21381.
[7] Chen, S.; Cai, W.; Piner, R.D.; Suk, J.W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R.S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano letters. 2011, 11, 3519-3525.
[8] Chen, S.; Cai, W.; Piner, R.D.; Suk, J.W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R.S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano letters. 2011, 11, 3519-3525.
[9] Cao, J.; Zhang, Y.; Men, C.; Sun, Y.; Wang, Z.; Zhang, X. and Li, Q. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions. ACS nano. 2014, 8, 4325-4333.
[10] Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L., Facile fabrication of light, flexible and multifunctional graphene fibers. Advanced Materials. 2012, 24, 1856-1861.
[11] Sharma, S.; ollet, B.G. Support materials for PEMFC and DMFC electrocatalysts—a review. Journal of Power Sources. 2012, 208, 96-119.
[12] Wang, C.; Waje, M.; Wang, X.; Tang, J.M.; Haddon, R.C.; Yan, Y. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano letters. 2004, 4, 345-348.
[13] Baronia, R.; Shraddha, T.; Avanish, K,; Srivastava.; Surinde, P,; Singhal, S.K. Synthesis and characterization of Pt/graphene-CNTs electrocatalyst for direct methanol fuel cells. Advanced Materials Proceedings. 2016, 1, 14-20.
[14] Kim, Y.I.; Soundararajan, D.; Park, C.W.; Kim, S.H.; Park, J.H.; Ko, J.M. Electrocatalytic properties of carbon nanofiber web-supported nanocrystalline Pt catalyst as applied to direct methanol fuel cell. Int. J. Electrochem. Sci. 2009, 4, 1548-1559.
[15] Atif, R.; Shyha, I.; Inam, F. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites—A Review. Polymers. 2016, 8, 281.
[16] Qu, L.; Liu, Y.; Baek, J.B.; Dai, L.; Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano. 2010, 4, 1321-1326.
[17] Gajendran, P.; Saraswathi, R.; Electrocatalytic performance of poly (o-phenylenediamine)-Pt–Ru nanocomposite for methanol oxidation. Journal of Solid State Electrochemistry. 2013, 17, 2741-2747.
[18] Huang, H.; Sun, D.; Wang, X.; Low-defect MWNT–Pt nanocomposite as a high performance electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C. 2011, 115, 19405-19412.
[19] Duan, J.; Zhang, X.; Yuan, W.; Chen, H.; Jiang, S.; Liu, X.; Zhang, Y.; Chang, L.; Sun, Z.; Du, J. Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation. Journal of Power Sources. 2015, 285, 76-79.
[20] Vilian, A.E.; Hwang, S.K.; Kwak, C.H.; Oh, S.Y.; Kim, C.Y.; Lee, G.W.; Lee, J.B.; Huh, Y.S.; Han, Y.K.; Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation. Synthetic Metals. 2016, 219, 52-59.
[21] Benvidi, A.; Dehghani-Firouzabadi, A.; Mazloum-Ardakani, M.; Mirjalili, B.B.F.; Zare, R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. Journal of Electroanalytical Chemistry. 2015, 736, 22-29.
[22] Huang, H.; Chen, H.; Sun, D. and Wang, X.; Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. Journal of Power Sources. 2012, 204, 46-52.
[23] Jha, N.; Jafri, R.I.; Rajalakshmi, N.; Ramaprabhu, S. Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. International journal of hydrogen energy. 2011, 36, 7284-7290.
[24] Choi, S.M.; Seo, M.H.; Kim, H.J.; Kim, W.B. Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon. 2011, 49, 904-909.
[25] Ban, F.Y.; Majid, S.R.; Huang, N.M.; Lim, H.N. Graphene oxide and its electrochemical performance. International Journal of Electrochemical Science. 2012, 7, 4345-4351.
[26] Bong, S.; Kim, Y.R.; Kim, I.; Woo, S.; Uhm, S.; Lee, J.; Kim, H. Graphene supported electrocatalysts for methanol oxidation. Electrochemistry Communications. 2010, 12, 129-131.
[27] Seselj, N.; Engelbrekt, C.; Zhang, J. Graphene-supported platinum catalysts for fuel cells. Science Bulletin. 2015, 60, 864-876.
[28] Kakaei, K.; Zhiani, M. A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation. Journal of power sources. 2013, 225, 356-363.
[29] Xin, Y.; Liu, J.G.; Zhou, Y.; Liu, W.; Gao, J.; Xie, Y.; Yin, Y.; Zou, Z. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources. 2011, 196, 1012-1018.
[30] Zeng, J.; Yang, J.; Lee, J.Y.; Zhou, W. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. The Journal of Physical Chemistry B. 2006, 110, 24606-24611.
[31] Qiu, J.D.; Wang, G.C.; Liang, R.P.; Xia, X.H.; Yu, H.W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. The Journal of Physical Chemistry C. 2011, 115, 15639-15645.
[32] Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature materials. 2011, 10, 424-428.
[33] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; Kim, Y.J. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology. 2010, 5, 574-578.
[34] Reina, A., Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters. 2008, 9, 30-35.
[35] Nguyen, A.T.; Lai, W.C.; Tran, V.V.; Nguyen, D.D.; Kan, H.C.; Hsu, C.C. Tubular graphene architectures at the macroscopic scale: fabrication and properties. Advanced Device Materials. 2016, 2, 23-29.
[36] Alyamani, A.; Lemine, O.M. FE-SEM Characterization of Some Nanomaterial. INTECH Open Access Publisher. 2012.
[37] https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
[38] Goldstein, J.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Romig Jr, A.D.; Lyman, C.E.; Fiori, C.; Lifshin, E. Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Business Media. 2012.
[39] Lloyd, G.E. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineralogical Magazine. 1987, 51, 3-19.
[40] Bragg, W.L. The analysis of crystals by the X-ray spectrometer. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1914, 89, 468-489.
[41] Cheng, C.E.; Lin, C.Y.; Chang, H.Y.; Huang, C.H.; Lin, H.Y.; Chen, C.H.; Hsu, C.C.; Chang, C.S.; Chien, F.S.S. Surface-enhanced Raman scattering of graphene with photo-assisted-synthesized gold nanoparticles. Optics express. 2013, 21, 6547-6554.
[42] https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[43] http://xpssimplified.com/elements/carbon.php
[44] Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C.; Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Physical Chemistry Chemical Physics. 2011, 13, 4083-4094.
[45] Choi, H.J.; Jung, S.M.; Seo, J.M.; Chang, D.W.; Dai, L.; Baek, J.B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy. 2012, 1, 534-551.
[46] Cruickshank, J.; Scott, K. The degree and effect of methanol crossover in the direct methanol fuel cell. Journal of Power Sources. 1998, 70, 40-47.
[47] Metikoš-Hukovic, M.; Babic, R.; Piljac, Y. Kinetics and electrocatalysis of methanol oxidation on electrodeposited Pt and Pt70Ru30 catalysts. Journal of New Materials for Electrochemical Systems. 2004, 7, 179-190.
[48] Guo, S., Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS nano. 2010, 4, 3959-3968.
[49] Yao, Z.; Zhu, M., Jiang, F.; Du, Y.; Wang, C.; Yang, P. Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. Journal of Materials Chemistry. 2012, 22, 13707-13713.
[50] Benvidi, A.; Dehghani-Firouzabadi, A.; Mazloum-Ardakani, M.; Mirjalili, B.B.F.; Zare, R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. Journal of Electroanalytical Chemistry. 2015, 736, 22-29.
[51] Gnanaprakasam, P.; Jeena, S.E.; Selvaraju, T. Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: an electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. Journal of Materials Chemistry A. 2015, 3, 18010-18018.
[52] Luo, J.; Njoki, P.N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C.J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir. 2006, 22, 2892-2898.
[53] Jang, H.D.; Kim, S.K.; Chang, H.; Choi, J.H.; Cho, B.G.; Jo, E.H.; Choi, J.W.; Huang, J. Three-dimensional crumpled graphene-based platinum–gold alloy nanoparticle composites as superior electrocatalysts for direct methanol fuel cells. Carbon. 2015, 93, 869-877.
[54] Liu, M.; Zhang, R.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chemical reviews. 2014, 114, 5117-5160.
[55] Li, Y.; Tang, L.; Li, J. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochemistry Communications. 2009, 11, 846-849.
[56] Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z. Nanocatalyst for direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy. 2010, 35, 7957-7970.
[57] Hu, Z.; Jiang, H.; Zhao, X.; Zhang, W.; Li, N. Method for preparing electrocatalysts with ultra-high activity using graphene oxide as the support. IET Micro & Nano Letters. 2014, 9, 496-498.
[58] Wasmus, S; Küver, A. Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry. 1999, 461, 14-31.
[59] Seselj, N.; Engelbrekt, C.; Zhang, J.; Graphene-supported platinum catalysts for fuel cells. Science Bulletin. 2015, 60, 864-876.
[60] Xu, C.; Wang, X.; Zhu, J. Graphene− metal particle nanocomposites. The Journal of Physical Chemistry C. 2008, 112, 19841-19845.
[61] Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energy & Environmental Science. 2012, 5, 8848-8868.
[62] Seger, B.; Kamat, P.V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. The Journal of Physical Chemistry C. 2009. 113, 7990-7995.
[63] Zhang, J.; Liu, H. Electrocatalysis of direct methanol fuel cells: from fundamentals to applications. John Wiley & Sons. 2009.
[64] Mayavan, S.; Sim, J.B.; Choi, S.M. Simultaneous reduction, exfoliation and functionalization of graphite oxide into a graphene-platinum nanoparticle hybrid for methanol oxidation. Journal of Materials Chemistry. 2012, 22, 6953-6958.
[65] Hsu, Y.H.; Nguyen, A.T.; Chiu, Y.H.; Li, J.M.; Hsu, Y.J. Au-decorated GaOOH nanorods enhanced the performance of direct methanol fuel cells under light illumination. Applied Catalysis B: Environmental. 2016, 185, 133-140.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top