跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張茹華
研究生(外文):Chang, Ru-Hua
論文名稱:使用華氏碼並建構於可程式邏輯板之人體通道傳輸收發器
論文名稱(外文):An FPGA-based Transceiver for Human Body Channel Communication using Walsh Codes
指導教授:鍾菁哲
指導教授(外文):Chung, Ching-Che
口試委員:李順裕盛鐸林泰吉
口試委員(外文):Lee Shuenn-YuhSheng, DuoLin, Tay-Jyi
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:91
中文關鍵詞:人體通道傳輸人體通道特性可程式邏輯板通用非同步收發傳輸器華氏碼
外文關鍵詞:BCCFPGAUARTHuman Body Channel CharacteristicsWalsh codes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在人口老化及現代科技的發展之下,可攜式醫療電子設備及可隨身佩戴、隨時測量的電子裝置越來越多。這類型的裝置大多是使用無線的方式進行傳輸,像是常見的藍芽傳輸、ZigBee。但是這些技術有很高的耗電量以及因為很多裝置也使用相同頻帶造成嚴重的干擾的問題。因此,以人體通道作為傳輸媒介的技術被提出。人體通道傳輸可以避免干擾的問題、能提供較穩定的傳輸,同時其功率消耗比較低。因為以上的優點,我們提出一個以人體通道傳輸的傳收器。
Virtex-7 VC707 evaluation board (EVB) 板是一張具有穩定且高速工作頻率的 EVB板,我們把人體通道傳收器建構於其上並且以華氏碼作為調變碼。華氏碼具有正交特性,所以可以容忍低於一半華氏碼長度的錯誤位元資料能被正確解調。除此之外,我們選取長度為2的continuous identical digits (CID)華氏碼避免過長的CID出現造成接收端難以回復訊號。在bit error rate (BER)量測中,以140公分傳輸距離傳送108個位元資料時,在488 Kbps (3.12 Mcps), 976 Kbps (6.25 Mcps), 以及1.95 Mbps (12.5 Mcps) 上並沒有任何錯誤資料發生。在3.9 Mbps (12.5 Mcps) 的傳輸率下,BER達到10-5。
在本研究提出的人體通道傳輸收發器,基於傳輸穩定度的提高,我們也提供直接傳輸多媒體資料的模式,在電腦上把圖片分解經由universal asynchronous receiver/transmitter (UART) 介面送到傳送器,經由最長為140公分、1.95 Mbps的速度傳到人體通道後,能正確地把它接收回,最後可以重建回原來完整的圖片。

In recent years, the portable healthcare devices are more and more popular. The wireless transmissions are widely used in these devices, such as Bluetooth and ZigBee. However, these techniques have drawbacks of high power consumption and have interferences in the shared frequency band, Therefore, body channel communication (BCC) is proposed because it has relatively low power consumption and has less interferences.
The proposed BCC transceiver which using Walsh codes as modulated codes is implemented on the Vurtex-7 VC707 evaluation board (EVB). The Walsh codes are orthogonal codes and the maximum number of error bits that can be tolerated can be up to half of the code’s length. Moreover, the CID of the Walsh codes are limited to 2 to avoid the no data transition situation which makes the receiver difficulty to recover the clock and data. There are no error bits occurred when transmitting 108 bits at 140 cm distance and at data rate of 488 Kbps (3.12 Mcps), 976 Kbps (6.25 Mcps), and 1.95 Mbps (12.5 Mcps). Moreover, the BER is 10-5 at 3.9 Mbps (12.5 Mcps).
In the proposed BCC transceiver, because of high data reliability, the multi-media transmission is supported. The image can be completely transmitted and received through 140 cm distance and the maximum data rate is 1.95 Mbps.

摘要...I
Abstract...II
Content...III
List of Figures...V
List of Tables...IX
List of Equations...XI
Chapter 1 Introduction...1
1.1 Introduction of Body Channel Communication...1
1.2 Modulation of Body Channel Communication Transceiver...4
1.2.1 Modulation: Wide-Band Signaling (WBS)...4
1.2.2 Modulation: Frequency Shift Keying...8
1.2.3 Modulation: Orthogonal frequency-division multiplexing...11
1.2.4 Modulation: Frequency Selective Digital Transmission Transceiver...15
1.2.5 Modulation: Walsh Code...17
1.2.6 Summary...21
1.3 FPGA-Based Body Channel Communication Transceiver...22
1.4 Measurement of Body Channel Communication...27
1.4.1 Measurement Setup...27
1.4.2 Measurement Results of the AFE Board...30
1.4.3 Measurement Results of Human Body Communication...35
1.5 Motivation...39
Chapter 2 Architecture of the BCC Transceiver using Walsh codes...40
2.1 Overview...40
2.2 Introduction to the Walsh codes...43
2.3 Walsh Code BCC Transmitter...47
2.4 8x Oversampling BCC Receiver...50
2.5 Implementation of the BCC transceiver on FPGA boards...57
Chapter 3 Implementation Results of the proposed BCC transceiver...59
3.1 Implemented Information of VC707 EVB...59
3.2 Implemented Information of Xilinx Integrated Synthesis Environment Design Suite...62
3.3 Implementation Results...67
3.4 Summary 77
Chapter 4 Conclusion and Future Work...82
4.1 Conclusion...82
4.2 Future Work...84
Reference...86

[1] A. Kara and H. L. Bertoni, “Blockage/shadowing and polarization measurements at 2.45 GHz for interference evaluation between Bluetooth and IEEE 802.11 WLAN,” in Proceedings of IEEE Antennas and Propagation Society International Symposium, pp. 376–379, Jul. 2011.
[2] Maicon D. Pereira, Germán A. Alvarez-Botero, and Fernando Rangel de Sousa, “Characterization and Modeling of the Capacitive HBC Channel,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 10, pp. 2626-2635, Oct. 2015.
[3] Ching-Che Chung, Chih-Yu Lin, and Jia-Zong Yang, “Time-domain characteristics of body channel communication (BCC) and BCC transceiver design,” in Proceedings of International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Apr. 2016.
[4] Ching-Che Chung, Duo Sheng, and Wei-Da Ho, “A low-cost low-power all-digital spread-spectrum clock generator,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 983-987, May 2015.
[5] Ke Lin, Bo Wang, Xing Zhang, Xinan Wang, Tingbin Ouyang, and Hao Chen, “A novel low power compact WBS human body channel receiver for wearable vital signal sensing application in wireless body area network,“ Microsystem Technologies, Jan. 2017.
[6] Željka Lucev, Igor Krois, and Mario Cifrek, “A capacitive intrabody communication channel from 100 kHz to 100 MHz,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 12, pp. 3280-3289, Dec. 2012.
[7] Ruoyu Xu, Hongjie Zhu, and Jie Yuan, “Characterization and analysis of intra-body communication channel,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1-4, Jul. 2009.
[8] Maria Amparo Callejón, David Naranjo-Hernández, Javier Reina-Tosina, and Laura M. Roa, “A Comprehensive study into intra-body Communication Measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 9, pp. 2446–2455, Sep. 2013.
[9] Chaoxun Wang, Ke Lin, Bo Wang, Jiali Hou, Mo Wang, Kai Xu, and Xin’an Wang, “Analysis of a compact BCC transceiver based on PLL FSK modulator/demodulator,” in Proceedings of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2014.
[10] Ping-Yuan Tsai, Yu-Yun Chang, Shu-Yu Hsu and Chen-Yi Lee, “An OFDM-based 29.1Mbps 0.22nJ/bit body channel communication baseband transceiver,” in Proceedings of International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Jun. 2015.
[11] Ping-Yuan Tsai, Shu-Yu Hsu, Jen-Shin Chang, Tsan-Wen Chen, and Chen-Yi Lee, “A QPSK/16-QAM OFDM-based 29.1Mbps LINC transmitter for body channel communication,” in Proceedings of IEEE Asian Solid-State Circuits Conference, pp.345-348, Nov. 2012.
[12] IEEE Computer Society, “IEEE Standard for Local and metropolitan area networks:
Part 15.6 Wireless Body Area Networks,” IEEE Standards Association, pp. 1-271, Feb, 2012.
[13] Hyungwoo Lee, Kwonjoon Lee, Sunjoo Hong, Kiseok Song, Taehwan Roh, Joonsung Bae, and Hoi-Jun Yoo, “A 5.5mW IEEE-802.15.6 wireless body-area- network standard transceiver for multichannel electro-acupuncture application,” in Digest of Technical Papers, IEEE Solid-State Circuits Conference (ISSCC), pp 452-453, Feb. 2013.
[14] Chee Keong Ho, Xin Liu, and Minkyu Je, “Data rate enhancement method for body channel frequency selective digital transmission scheme,” in Proceedings of IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Dec. 2013.
[15] Chee Keong Ho, Jia Hao Cheong, Junghyup Lee, Vishal Kulkarni, Peng Li, Xin Liu, and Minkyu Je, “High bandwidth efficiency and low power consumption Walsh code implementation methods for body channel communication,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 1867-1878, Sep. 2014.
[16] Zibo Cai, MirHojjat Seyedi, Weiwei Zhang, Francois Rivet, and Daniel T. H. Lai, “Characterization of impulse radio intrabody communication system for wireless body area networks,” Journal of Medical and Biological Engineering, vol. 37, no.1, pp 74-84, Feb. 2017.
[17] Hyunwoo Cho, Hyunki Kim, Minseo Kim, Jaeeun Jang, and Hoi-Jun Yoo “A 79pJ/b 80Mb/s full-duplex transceiver and 42.5 W 100kb/s super-regenerative transceiver for body channel communication,”in Digest of Technical Papers, IEEE Solid-State Circuits Conference (ISSCC), pp. 380-381, Feb. 2015.
[18] Namjun Cho, Jerald Yoo, Seong-Jun Song, Jeabin Lee, Seonghyun Jeon, and Hoi-Jun Yoo, “The human body characteristics as a signal transmission medium for intrabody communication,” IEEE Transactions on Microwave theory and Techniques, vol. 55, no. 5, pp. 1080-1086, May 2007.
[19] Joonsung Bae, Kiseok Song, Hyungwoo Lee, Hyunwoo Cho, and Hoi-Jun Yoo, “A 0.24-nJ/b wireless body-area-network transceiver with scalable double-FSK modulation,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 310-322, Jan. 2012.
[20] Namjun Cho, Joonsung Bae, and Hoi-Jun Yoo, “An interference-resilient body channel transceiver for wearable body sensor network,” in Proceedings of Biomedical Circuits and Systems Conference, pp. 193-196, Nov. 2008.
[21] Alberto Fazzi, Sotir Ouzounov, and John van den Homberg, “A 2.75mW wideband correlation-based transceiver for bodycoupled communication,” in Digest of Technical Papers, IEEE Solid-State Circuits Conference (ISSCC), pp. 204- 205, Feb. 2009.
[22] Nie Zedong, Ma Jingjing, Kamen Ivanov, and Wang Lei, “An investigation on dynamic human body communication channel characteristics at 45 MHz in different surrounding environments,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 309-312, Feb. 2014.
[23] Chih-Yu Lin, “Characteristics of the human body channel and design the human body channel transceiver,” Master's thesis, National Chung Cheng University, 2015.
[24] Jia-Zhong Yang, “An FPGA-based transceiver for human body channel communication applications,” Master's thesis, National Chung Cheng University, 2016.
[25] Analog Devices, “Ultralow noise VGAs with preamplifier and programmable RIN,” AD8331/AD8332/AD8334 Data sheet, 2010. [Online]. Available:
http://www.analog.com/media/en/technical-documentation/data-sheets/AD8331 _8332_8334.pdf .
[26] ON Semiconductor, “Hex Schmitt-trigger Inverter,” MC74HC14A Data sheet, Jul. 2012.[Online]. Available:
http://www.onsemi.cn/pub_link/Collateral/MC74HC14A-D.PDF.
[27] Joonsung Bae, Kiseok Song, Hyungwoo Lee, Hyunwoo Cho, and Hoi-Jun Yoo, “A 0.24-nJ/b wireless body-area-network transceiverwith scalable double-FSK modulation,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 310-322, Jan. 2012.
[28]VC707 evaluation board for the Virtex-7 FPGA user guide, Xilinx Inc., Available: http://www.xilinx.com/support/documentation/boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf.
[29] Hyunwoo Cho, Hyunki Kim, Minseo Kim, Jaeeun Jang, Joonsung Bae and Hoi-Jun Yoo, “A 79pJ/b 80Mb/s Full-Duplex Transceiver and a 42.5μW 100kb/s Super-Regenerative Transceiver for Body Channel Communication,” in Digest of Technical Papers, IEEE Solid-State Circuits Conference (ISSCC), Feb. 2015, pp. 1-3.
[30] ChipScope Pro Software and Cores User Guide, Xilinx Inc., Available: https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/chipscope_pro_sw_cores_ug029.pdf
[31] Xuedong Liang, and Ilangko Balasingham, “Preformance analysis of the IEEE 802.15.4 based ECG monitoring network,” in Proceeding of the seventh LASTED International Conferences on Wireless and Optical Communications, May, 2007, pp. 99-104.
[32] Saam Iranmanesh and Esther Rodriguez-Villegas, “A 950 nW Analog-Based Data Reduction Chip for Wearable EEG System in Epilepsy,” in press, IEEE Journal of Solid-State Circuits, Jul. 2017.
[33] FAQ: Recommended upload encoding settings, Youtube, Available: https://support.google.com/youtube/answer/1722171?hl=en.
[34] FAQ: How much bandwidth does skype need, Skype, Available: https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need?q=data+rate.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊