(3.238.235.155) 您好!臺灣時間:2021/05/11 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張博鈞
研究生(外文):Chang, Po-Chiun
論文名稱:微型化雙頻帶通濾波器設計與四工器應用於無線擴音模組
論文名稱(外文):Design of the Compact Microstrip Dual-Band Bandpass Filters and Quadruplexer for Wireless Microphone System
指導教授:湯敬文
指導教授(外文):TANG, CHING-WEN
口試委員:李清和黃尊禧蔡作敏湯敬文
口試委員(外文):LEE, CHING-HERHUANG, TZUEN-HSITSAI, ZUO-MINTANG, CHING-WEN
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:四工器無線擴音模組雙頻帶通濾波器微型化
外文關鍵詞:quadruplexerwireless microphone systemdual-band bandpass filterscompact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部分,第一部分為微型化雙頻帶通濾波器設計,是結合傳輸線、耦合線以及接地電桿的方式,設計出微型化雙頻帶通濾波器。此電路具有尺寸極小、隔離度好以及選擇性高等優點,可進而提升雙頻帶通濾波器特性。
第二部分介紹四工器應用於無線擴音模組,使用四組帶通濾波器作為基本單位架構來設計四工器,其基本單位架構包含分佈式耦合饋入線、分佈式耦合輸出線與一對C型諧振腔,然後把四工器應用於含有四個頻段的無線擴音模組系統之中。
上述兩個電路設計,使用電磁模擬軟體IE3D進行模擬輔助,以及實際製作電路進行量測。經由電磁模擬與量測的結果比較,兩者具有良好的一致性。
The thesis contains two parts. The first part will introduce a design of compact dual-band bandpass filters ,which combine the transmission lines, parallel coupled lines and grounded inductor are integrated to design a compact dual-band bandpass filters. The proposed circuit has compact size, high isolation, and high selectivity….etc. of benefits to improve the performance of dual-band bandpass filters.
The second part will introduce a quadruplexer for wireless microphone system.We use four band pass filters as unit cells and put those four cells together to design a quadruplexer for wireless microphone system. The unit cell contains distributed coupling feed line, distributed input/output lines and a pair of C-shaped resonators.We eventually put quadruplexers into wireless microphone system for application.
These two circuits are simulated with electromagnetic simulator software IE3D, and the prototype of these two circuits are fabricated and measured. Comparing the simulated results with the experimental data, we can see that the measured results can match well with the EM simulation.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 1
1.3 論文架構 2
第二章 ABCD矩陣與四埠網路分析 3
2.1 ABCD矩陣 3
2.2 奇偶模分析法 5
2.2.1 雙埠網路 5
2.2.2 四埠網路 8
第三章 微型化雙頻帶通濾波器設計 15
3.1 簡介 15
3.2雙頻帶通濾波器分析 16
3.2.1 奇偶模態分析 18
3.2.2 奇模激發 18
3.2.3 偶模激發 20
3.2.4 傳輸零點分析 23
3.3設計實例-微型化雙頻帶通濾波器設計(I) 25
3.3.1微型化雙頻帶通濾波器設計(I) -電流分布 30
3.4設計實例-微型化雙頻帶通濾波器設計(II) 34
3.4..1微型化雙頻帶通濾波器設計(II) -電流分布 38
第四章 濾波器設計理稐 41
4.1 簡介 41
4.2 設計流程 42
4.2.1 低通濾波器原形 42
4.2.2 阻抗與導納倒轉器(K and J Inverters) 43
4.2.3 使用J或K倒轉器替換低通濾波器原形 46
4.2.4 低通濾波器原形轉換成帶通濾波器 47
4.2.5 利用電納斜率參數表示帶通濾波器 49
4.2.6 使用耦合係數表示帶通濾波器 50
4.2.7 使用耦合係數法設計帶通濾波器流程 52
第五章 四工器應用於無線擴音模組 53
5.1 簡介 53
5.2無線擴音模組系統介紹 54
5.3使用耦合係數法設計帶通濾波器 56
5.3.1使用耦合係數法設計單一諧振腔饋入位置 57
5.3.2決定諧振腔的耦合間距 58
5.4四工器中四個帶通濾波器諧振腔
5.4.1第一個帶通濾波器諧振腔-中心頻率位於0.535 GHz 60
5.4.2第二個帶通濾波器諧振腔-中心頻率位於0.603 GHz 61
5.4.3第三個帶通濾波器諧振腔-中心頻率位於0.664 GHz 64
5.4.4第四個帶通濾波器諧振腔-中心頻率位於0.892 GHz 66
5.5設計實例與量測 68
5.5.1設計實例與量測(I) 68
5.5.2設計實例與量測(II) 73
5.5.3板材的選用考量與無線擴音模組實際製造的關聯 78
第六章 結論 80
參考文獻 81

[1]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 28, no. 12, pp. 1413–1417, Dec.1980.
[2]K. U-yen, E. J. Wollack, T. A. Doiron, J. Papapolymerou, and J. Laskar, “A planar bandpass filter design with wide stopband using double split-end stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, pp. 1237–1244, Mar. 2006.
[3]S. F. Chang, Y. H. Jeng and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol. 40, no. 1, pp. 38–39, Jan. 2004.
[4]C. W. Tang, “Design of a microstrip filter using multiple capacitively loaded coupled lines,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 651–657, Jun. 2007.
[5]C. H. Wu, C. H. Wang, and C. H. Chen, “Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 507–509, Jul. 2007.
[6]Y. M. Chen, S. F. Chang, C. C. Chang, and T. J. Hung, “Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 10, pp. 2191–2199, Oct. 2007.
[7]C. L. Hsu and J. T. Kuo, “A two-stage SIR bandpass filter with an ultra-wide upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 34–36, Jan. 2007.
[8]J. T. Kuo, C. L. Hsu, and E. Shih, “Compact planar quasi-elliptic function filter with inline stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 8, pp. 1747–1754, Aug. 2007.
[9]C. W. Tang and Y. K. Hsu, “Design of a wide stopband microstrip bandpass filter with asymmetric resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 91–93, Feb. 2008.
[10]C. W. Tang and Y. K. Hsu, “A microstrip bandpass filter with ultra-wide stopband,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 6, pp. 1468–1472, Jun. 2008.
[11]S. L. March, “Phase velocity compensation in parallel-coupled microstrip,” in IEEE MTT-S Int. Microw. Symp. Dig., 1982, pp. 410–412.
[12]J. Bahl, “Capacitively compensated high performance parallel coupled microstrip filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 1989, pp. 679–682.
[13]R. J. Cameron, M. Yu, and Y. Wang, “Direct-Coupled Microwave Filters With Single and Dual Stopbands,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 11, pp. 3288–3297, Nov. 2005.
[14]H. Joshi and W. J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[15]H. M. Lee and C. M. Tsai, “Dual-band filter design with flexible passband frequency and bandwidth selections,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1002–1009, May 2007.
[16]J. Lee and K. Sarabandi, “A synthesis method for dual-passband microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 6, pp. 1163–1170, Jun. 2007.
[17]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[18]P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[19]C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 10, pp. 2362– 2367, Oct. 2002.
[20]P. K. Singh, S. Basu, and Y. H. Wang, “Miniature dual-band filter using quarter wavelength stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88–90, Feb. 2008.
[21]A. S. Liu, T. Y. Huang, and R. B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 2921–2929, Dec. 2008.
[22]Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonator with new coupling schemes,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[23]J. Wang, Y. X. Guo, B. Z. Wang, L. C. Ong, and S. Xiao, “High selectivity dual-band stepped-impedance bandpass filter,” Electron. Lett., vol. 42, no. 9, pp. 1–2, Apr. 2006.
[24]H. K. Jhuang, C. H. Lee, and C. I. G. Hsu, “Design of compact microstrip dual band bandpass filters with λ/4 stepped-impedance resonators,” Microw. Opt. Technol. Lett., vol. 49, no.1, pp. 164–168, Jan. 2007.
[25]J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microw. Theory Techn., vol. 4, no. 4, pp. 246–252. Oct. 1956.
[26]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., 1997, pp. 789–792.
[27]M. H. Weng, R. Y. Yang, Y. C. Chang, H. W. Wu, and K. Shu, “Design of a multilayered dual-band bandpass filter with transmission zeros,” Microw. Opt. Technol. Lett., vol. 50, no. 8, pp. 2010–2013, Aug. 2008.
[28]M. H. Weng, H. W. Wu, K. Shu, J. R. Chen, R. Y. Yang, and Y. K. Su, “A novel triple-band bandpass filter using multlayer-based substrates for WiMAX,” in Proc. 37th Eur. Microw. Conf., 2007, pp. 325–328.
[29]M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[30]M. Sagawa, M. Makimoto, and S. Yamashita, “A design method of bandpass filters using dielectric-filled coaxial resonators,” IEEE Trans. Microw. Theory Techn., vol. MTT-33, no. 2, pp. 152–157, Feb. 1985.
[31]J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 10, pp. 472–474, Oct. 2004.
[32]J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 4, pp. 1331–1337, Apr. 2005.
[33]C. L. Hsu, J. T. Kuo, and F. C. Hsu, “Design of loop resonator filters with a dual-passband response,” in Proc. Asia-Pacific Microw. Conf., vol. 3, 4-7 Dec. 2005.
[34]C. Y. Chen, C Y. Hsu, and H. R. Chung, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 669–671, Dec. 2006.
[35]D. M. Pozar, Microwave Engineering, 2nd ed. John Wiley & Sons, 1998.
[36]J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, New York, 2001.
[37]R. E. Collin, Foundations For Microwave Engineering, 2nd ed. McGraw Hill, 1992.
[38]V. Belevitch, Chebyshev Filters and Amplifier Networks, Wireless Eng., vol. 29, pp. 106-107, April, 1952
[39]R. J. Cameron, M. Yu, and Y. Wang, “Direct-Coupled Microwave Filters With Single and Dual Stopbands,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 11, pp. 3288–3297, Nov. 2005.
[40]H. Joshi and W. J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[41]H. M. Lee and C. M. Tsai, “Dual-band filter design with flexible passband frequency and bandwidth selections,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 5, pp. 1002–1009, May 2007.
[42]J. Lee and K. Sarabandi, “A synthesis method for dual-passband microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 6, pp. 1163–1170, Jun. 2007.
[43]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[44]P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[45]C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 10, pp. 2362– 2367, Oct. 2002.
[46]P. K. Singh, S. Basu, and Y. H. Wang, “Miniature dual-band filter using quarter wavelength stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88–90, Feb. 2008.
[47]A. S. Liu, T. Y. Huang, and R. B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 2921–2929, Dec. 2008.
[48]Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonator with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[49]J. Wang, Y. X. Guo, B. Z. Wang, L. C. Ong, and S. Xiao, “High selectivity dual-band stepped-impedance bandpass filter,” Electron. Lett., vol. 42, no. 9, pp. 1–2, Apr. 2006.
[50]H. K. Jhuang, C. H. Lee, and C. I. G. Hsu, “Design of compact microstrip dual band bandpass filters with λ/4 stepped-impedance resonators,” Microw. Opt. Technol. Lett., vol. 49, no.1, pp. 164–168, Jan. 2007.
[51]J.-S. Hong and M. J. Lancaster, "Microstrip filters for RF/microwave applications," New York: John Wiley & Sons, 2001.
[52]G. L. Matthaei, L. Young, and E. M. T. Jones, "Microwave Filters, Impedance-Matching Network, and Coupling Structures," Norwood, MA: Artech house, 1980.
[53]J. S. Wang, "Microstrip tapped-line filter design," IEEE Trans. Microw. Theory Techn., vol. 27, no. 1, pp.44-50, Jan.1979

電子全文 電子全文(網際網路公開日期:20220711)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔