跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡哲宜
研究生(外文):HU,CHE-YI
論文名稱:台電高佔比再生能源併入下輸電系統壅塞分析與視覺化介面開發
論文名稱(外文):Visualization-based congestion analyses for Taiwan’s transmission system after integrating a large amount of renewable energy
指導教授:吳元康吳元康引用關係
指導教授(外文):WU,YUAN-KANG
口試委員:陸臺根李清吟吳進忠
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:再生能源線路壅塞線路瓶頸視覺化介面
外文關鍵詞:Renewable EnergyLine CongestionLine BottlenecksVisulization Interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
因應全球再生能源發電比例日益提高,電網的結構變化和傳輸網路的壅塞在許多國家中受到相當的重視。我國政府提出的能源政策為2025年離岸風電裝置容量達到3GW,與傳統發電廠相比,再生能源出力具有隨機波動的特徵,勢必對電網造成一定的衝擊,其中一個主要的影響是造成傳輸網路的線路流量過載。因此,在高占比再生能源併網前後了解系統目前的傳輸瓶頸是重要的。本文使用台灣電力系統參數進行模擬不同季節、不同時段下既有的電力系統傳輸線路瓶頸,以及未來在台灣西部沿海變電所併入離岸風力發電與西部各縣市併入太陽能發電的情境分析,包含可能壅塞線路的評估。為避免線路壅塞導致再生能源無法傳輸至用戶,若能即時處理未來大量再生能源併入電網後的線路壅塞,必能提高能源使用效率,並建立一個友善的併網環境,將其模擬結果提供給系統規劃參考。此外,本研究初步構構一個台電輸電系統視覺化介面,藉此可清楚地呈現輸電線路壅塞瓶頸,供系統規劃與調度人員參考。
With the increase of installed capacity of renewable energy, the transmission expansion and line congestions play the vital role in many countries. According to the data from Industrial Technology Research Institute (ITRI), in 2025, the target of total capacity for offshore wind farm in Taiwan will be around 3 GW. Compared to conventional power plants, renewable power output has random and fluctuant characteristics. Additionally, the existing power grids would have insufficient capacity to transfer those additional renewable energies, which increases the risk of the overload on the transmission lines. Transmission congestions would increase system operation cost and waste nature resources. Therefore, it is significant to identify transmission bottlenecks before and after a large scale of renewable energy integration in advance. In this thesis, the data of generation and load recorded by Taipower was utilized to investigate the possible transmission congestions. Moreover, various scenarios analyses by considering different renewable energy integrations were implemented. The result of this thesis can provide a reference which can help system operators to establish a friendly environment for renewable energy integration and to avoid high transmission cost caused by line congestions. Additionally, this thesis developed a visulization interface for the Taiwan transmission system. It can present the congestion bottlenecks clearly and provide a reference to system planners and operators.
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文架構 5
1.4 研究貢獻 6
第二章 台灣電力系統簡介 7
2.1 前言 7
2.2 台灣輸變電系統架構 7
2.3 發電系統架構 9
第三章 台灣2016年輸電系統潛在弱點分析 12
3.1 2016年台電系統模擬檔案介紹 12
3.2 2016年台電系統傳輸線容量瓶頸分析 13
3.3 易壅塞線路之相對應發電機組敏感因子分析 19
3.4 未來再生能源選擇併入點之建議 23
第四章 未來高占比再生能源大量併網後台電系統線路壅塞評估 24
4.1台灣風力與太陽能發電未來併聯的規劃情境 24
4.1.1 台灣離岸風場最大併網裝置容量評估方法 24
4.1.2 台灣離岸風場最大併網裝置容量規劃模擬結果分析 26
4.1.3 再生能源裝置容量規劃 33
4.2併入各種情境下的再生能源後之系統輸電線路壅塞分析 37
4.2.1 案例分析一: 再生能源(風力3GW)併入後對線路潮流的影響 38
4.2.2 案例分析二: 再生能源(太陽能3GW)併入後對線路潮流的影響 48
4.2.3 案例分析三:再生能源(風力3GW與太陽能3GW) 併入後對線路潮流的影響 56
4.2.4 案例分析四:再生能源(風力5.2GW)併入後對線路潮流的影響 64
4.2.5 案例分析五:再生能源(太陽能6.2GW)併入後對線路潮流的影響 74
4.2.6案例分析六:再生能源(風力5.2GW與太陽能6.2GW)併入後對線路潮流的影響 82
4.3 解決情境一與情境二再生能源併入線路瓶頸的建議 91
第五章 台電輸電系統線路壅塞視覺化介面製作 94
5.1 前言 94
5.2 系統開發平台 95
5.2.1 環境開發軟體工具 95
5.2.2 網頁開發所使用的程式語言 97
5.3 視覺化介面設計流程說明 98
5.3.1 資料處理(Model) 99
5.3.2 介面功能服務提供(Controller)和介面顯示(View) 100
5.4 介面功能介紹 104
5.4.1 視覺化系統N-0狀態功能 105
5.4.2 視覺化系統N-1狀態功能 106
第六章 結論與未來工作 107
6.1 結論 107
6.2 未來工作 108
參考文獻 109

[1]Kamga, A.F.K.; Voller, S.; Verstege, J.F.; “Congestion management in transmission systems with large scale integration of wind energy,” CIGRE/IEEE PES Joint Symposium on Integration of Wide-scale Renewable Resources into the Power Delivery System, 2009, pp. 1-1.
[2]G. Zhang, B. Zhang, H. Sun, and W. Wu, “Ultra-short term probabilistic transmission congestion forecasting considering wind power integration,” 8th International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009), Hong Kong, China, 2009, pp. 1-6.
[3]M. Klaric and I. Kuzle, ‘‘Grid integration of wind power plants in congested line,’’ IEEE EUROCON 2009, St.-Petersburg, 2009, pp. 596-601.
[4]Pei Bie et al., ‘‘Economic benefits evaluating of wind power integration considering transmission congestion,’’ 2016 Clemson University Power Systems Conference (PSC), Clemson, SC, 2016, pp. 1-6.
[5]M. Majidi-Qadikolai and R. Baldick, ‘‘Integration of N − 1 contingency analysis with systematic transmission capacity expansion planning: ERCOT case study,’’ IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2234–2245, May 2016.
[6]M. Afkousi-Paqaleh, A. Abbaspour-Tehrani fard, M. Rashidinejad and K. Y. Lee, ‘‘Optimal placement and sizing of distributed resources for congestion management considering cost/benefit analysis, ” IEEE PES General Meeting, Minneapolis, MN, 2010, pp. 1-7.
[7]Q. Qi and C. Zhang, ‘‘Study of Some Key Issues Related to Large-Scale Wind Power Grid Integration in China,” 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, 2012, pp. 1-4.
[8]J. Sun and K. L. Lo, “A Congestion Management Method with Demand Elasticity and PTDF Approach, ’’ in Proc.IEEE UPEC,2012,pp. 1-6.
[9]Subhasish Deb and Arup Kumar Goswami, "Congestion management by generator rescheduling using artificial bee colony optimization technique," IEEE India Conference, pp.909-914, Dec. 2012.
[10]J. Hazra and A. K. Sinha, “Congestion management using multiobjective particle swarm optimization,” in IEEE Trans. Power Systems, vol. 22, no. 4, 2007, pp. 1726–1734.
[11]T. Qiu, B. Xu, Y. Wang, Y. Dvorkin, and D. Kirschen, “Stochastic multistage co-planning of transmission expansion and energy storage,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 643–651, Jan. 2017.

[12]H. Daneshi and A. Srivastava, “Impact of battery energy storage on power system with high wind penetration,” in Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES, May 2012, pp. 1–8.
[13]L. Ming-Shun, C. Chung-Liang, L. W. Lee, and W. Li, “Combining the wind power generation system with energy storage equipment,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2109–2115, Nov./Dec. 2009.
[14]Y. Gu and L. Xie, "Fast Sensitivity Analysis Approach to Assessing Congestion Induced Wind Curtailment," IEEE Transactions on Power Systems, vol.29, no.1, pp.101-110, Jan. 2014.
[15]N. T. A. Nguyen, D. D. Le, G. G. Moshi, C. Bovo, and A. Berizzi, “Sensitivity analysis on locations of energy storage in power systems with wind integration,” in Environment and Electrical Engineering (EEEIC), 2015 IEEE 15th International Conference on, 2015, pp. 1115– 1119.
[16]J. Black, S. Connor, and J. Colandairaj, “Planning network reinforcements with dynamic line ratings for overhead transmission lines,” in Proc. 45th Int. Univ. Power Eng. Conf., Sep. 31, 2010, pp. 1–6.
[17]J. Fu, D. J. Morrow, S. Abdelkader and B. Fox, "Impact of Dynamic Line Rating on Power Systems," Universities' Power Engineering Conference (UPEC), Proceedings of 2011 46th International, Soest, Germany, 2011, pp. 1-5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top