跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏銘德
研究生(外文):MING-DE, YANG
論文名稱:基於非平行分布補償強健多項式模糊控制系統之太陽光電陣列最大功率追蹤器研製
論文名稱(外文):Design and Implementation of a Maximum Power Point Tracker for PV Arrays Based on Non-PDC Robust Polynomial Fuzzy Control Systems
指導教授:余國瑞余國瑞引用關係
指導教授(外文):GWO-RUEY, YU
口試委員:張淵智莊智清林俊良鄭智湧
口試委員(外文):YUAN-CHIH, CHANGJYH-CHING, JUANGCHUN-LIANG, LINCHIH-YUNG, CHENG
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:145
中文關鍵詞:非平行分布補償多項式模糊控制系統太陽光電陣列最大功率追蹤
外文關鍵詞:Non-parallel distribution compensationPolynomial Fuzzy Control SystemsPV ArraysMaximum Power Point Tracker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本文設計非平行分布補償(Non-Parallel Distributed Compensation, Non-PDC)強健多項式模糊系統,並應用於最大功率追蹤器(Maximum Power Point Tracker)研製。控制策略以Non-PDC方式進行,以較少的模糊規則進行控制,可縮短微處理器運算時間,進而降低實現成本。另外為提高最大功率追蹤性能,設計滿足 性能指標與具強健性之多項式模糊控制系統。最大功率追蹤器之電路架構採用升-降壓直流轉換器,其操作電壓範圍廣泛,但內部存在二極體偏壓,因此本文提出定理一,為滿足 性能指標之Non-PDC多項式模糊穩定定理,以抑制偏壓影響。此外,最大功率追蹤器會因電子元件老化產生模式不確定性,使系統不易追蹤至最大功率點,故本文提出定理二,為Non-PDC強健多項式模糊穩定定理,以降低模式不確定性之影響。根據定理一及定理二之平方和(Sum of Squares),可求得滿足Non-PDC多項式模糊之控制增益,並經由自行研製之TI控制電路板實現。電腦模擬與實驗結果均顯示,不論此最大功率追蹤器操作於降壓模式或升壓模式,在安定大氣環境、受外部干擾訊號、大氣環境變化等不同情形下,本文所設計之Non-PDC強健多項式模糊控制器,不僅能節省微處理器運算時間,且具有優越的強健控制性能。
This thesis adopts Non-Parallel Distributed Compensation (Non-PDC) robust polynomial fuzzy systems to design maximum power point tracker (MPPT). Less control rules are applied because of Non-PDC method, it can shorten calculating time of microcontroller, and reduce cost. Polynomial fuzzy control system which has performance index and robustness is designed to improve performance of maximum power point tracking. The circuit topology of maximum power point tracker is buck-boost converter, which has wide operating voltage and diode bias. Since the converter contains an internal diode bias, this thesis proposes Non-PDC polynomial fuzzy stability theorem that meets the performance index to reduce the affect of diode bias. Besides, Circuit aging of maximum power point tracker causes model uncertainty, it reduces systems tracking performance. The second theorem of this thesis is Non-PDC robust polynomial fuzzy stability theorem that considers the model uncertainty and performance index to reduce the affect of model uncertainty. Designing the controller gain which can satisfy Non-PDC polynomial fuzzy theorem by the first and second theorem base on sum-of-suqares (SOS) stability conditions, and achieve with homemade TI control stage . Experiments show that the Non-PDC robust polynomial fuzzy controller can not only reduce calculating time, but also has advanced control performance in the case of stable atmospheric environment, external disturbance signal and atmospheric environment change regardless of the buck or boost mode.
文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vii
表目錄 x
第一章、緒論 1
1.1研究背景 1
1.2文獻回顧 2
1.3論文大綱 4
第二章、太陽能光電板特性 6
2.1能量轉換原理 6
2.2等效電路與輸出特性 7
第三章、系統架構與周邊電路 10
3.1太陽能發電系統架構 10
3.2 直流轉換器介紹 13
3.2.1降壓模式 13
3.2.2升壓模式 15
3.2.3擴增狀態方程式 17
3.3周邊硬體電路 19
3.3.1輔助電源電路 19
3.3.2硬體保護電路 20
3.3.3開關驅動電路 21
3.3.4電壓回授電路 22
3.3.5電流回授電路 23
第四章、最大功率追蹤控制法 24
4.1多項式模糊控制系統 24
4.2 Non-PDC多項式模糊控制器設計 26
4.2.1 Non-PDC H∞多項式模糊控制系統穩定性分析與證明 26
4.2.2 Non-PDC強健多項式模糊控制系統穩定性分析與證明 31
第五章、軟體規劃 38
5.1微處理器介紹 38
5.2程式架構 39
5.2.1主程式流程 39
5.2.2 A/D中斷副程式流程 40
5.2.3 Non-PDC多項式模糊控制之最大功率追蹤副程式 41
第六章、系統模擬結果 42
6.1模組電氣規格 42
6.2 降壓模式之安定大氣環境實驗模擬 43
6.3 降壓模式之強健實驗模擬 45
6.3.1 干擾實驗 46
6.3.2 日照曲線變化 50
6.3.3 溫度曲線變化 53
6.4 升壓模式之安定大氣模擬環境實驗 56
6.5 升壓模式之強健實驗模擬 58
6.5.1 干擾實驗 59
6.5.2 日照曲線變化 62
6.5.3 溫度曲線變化 65
第七章、實驗與實測結果 69
7.1電氣規格 69
7.2微處理器運算時間 70
7.3 降壓模式之安定大氣模擬環境實驗 71
7.4 降壓模式之強健實驗 74
7.4.1 干擾實驗 75
7.4.2 日照曲線變化 79
7.4.3 溫度曲線變化 86
7.4.4 部分遮蔭實驗 93
7.5 升壓模式之安定大氣模擬環境實驗 96
7.6 升壓模式之強健實驗 99
7.6.1 干擾實驗 100
7.6.2 日照曲線變化 105
7.6.3 溫度曲線變化 112
7.6.4 部分遮蔭實驗 119
7.7 2kW太陽光電陣列全日實測 123
第八章、結論及未來研究方向 142
8.1 結論 142
8.2 未來研究方向 142
參考文獻 143


[1]我國再生能源發電概況(2017, July. 1) [Online]. Available: http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
[2]J. Kim, and C. Kim, “A DC-DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE Trans. Power Electronics, vol. 28, no. 8, pp. 3827-3833, 2013.
[3]H. C. Chen, and W. J. Lin, “MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converter,” IEEE Trans. Power Electronics, vol. 29, no. 1, pp. 29-35, 2014..
[4]A. Urtasun, and D. D.-C. Lu, “Control of a single-switch two-input buck converter for MPPT of two PV strings,” IEEE Trans. Industrial Eletronics, vol. 62, no. 11, pp. 7051-7060, 2015.
[5]S. Stanzione, C. van Liempd, R. van Schaijk, Y, Naito, F. Yazicioglu, and C. Van Hoof “A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electronic energy harvesters,” IEEE Journal. Solid-State Circuits, vol. 48, no. 12, pp. 3002-3010, 2013.
[6]T. F. Wu, C. L. Kuo, K. H. Chen, W. R. Chang, and Y. D. Lee, “Integretion and operation of a single phase bidirectional inverter with two buck/boost MPPTs for DC-distribution applications,” IEEE Trans. Power Electronics, vol. 28, no. 11, pp. 5098-5106, 2013.
[7]K. Kim, K. Lee, Y. Choi, and G. Cho, “A study on the control of buck-boost converter using newton-method MPPT,” in Proc. IEEE ICEMS, 2013, pp. 329-333.
[8]S. K. Kollimalla, and M. K. Mishra, “A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance” IEEE Trans. Energy Conversion, vol. 29, no. 3, pp. 602-610, 2014.
[9]M. Killi, and S. Samanta, “Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 62, no. 9, pp. 5549-5559, 2015
[10]A. A. Nafeh, F. H. Fahmy, O. A. Mahgoub, and E. M. El-Zahab, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electronics, vol. 16, no. 1, pp. 46-54, 2001.
[11]A. Garrigo, J. M. Blanes, J. A. Carrasco, and J. B. Ejea, “Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation,” Renewable Energy, vol. 32, pp. 1059–1076, 2007.
[12]A. Chikh, and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, pp. 644-652, 2015.
[13]H. Renaudineau, F. Donatantonio, J. Fontchastagner, G. Petrone, G. Spagnuolo, J. P. Martin, and S. Pierfederici, “A PSO-based global MPPT technique for distributed PV power generation,” IEEE Trans. Industrial Electronics, pp. 1047-1058, 2015.
[14]K. Sundareswaran, S. Peddapati, and S. Palani, “MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies,” IEEE Trans. Energy Conversion, vol. 29, no. 2, pp. 463-472, 2014.
[15]S. Tang, Y. Sun, Y. Chen, Y. Zhao, Y. Yang, and W. Szeto, “An enhanced MPPT method combining fractional-oder and fuzzy logic control,” IEEE Journal of Photovoltaics, vol. 7, no. 2, pp. 640-650, 2017.
[16]S. F. Derakhshan, A. Fatehi, and M. G. Sharabiany, “Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI,” IEEE in Trans. Cybernetics, Vol. 44, no. 12, pp. 2557-2567, 2014.
[17]C.S. Chiu, “T-S fuzzy maximum power point tracking control of solar power generation systems,” IEEE Trans. Energy Conversion, vol. 25, no. 4, pp. 1123-1132, Dec. 2010.
[18]C. S. Chiu, and Y.L. Ouyang, “Robust maximum power tracking control of uncertain photovoltaic systems: a unified T-S fuzzy model-based approach,” IEEE Trans. Control Systems Technology, vol. 19, no. 6, pp. 1516-1526, Nov. 2011
[19]K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 17, no. 4, pp. 911-922, Aug. 2009.
[20]K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, “Polynomial fuzzy observer designs: a sum-of-squares approach,” IEEE Trans. Systems, vol. 42, no. 5, pp. 1330-1342, Oct. 2012.
[21]H. K. Lam, and J. C. Lo, “Output regulation of polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, vol. 21, no. 2, pp. 262-274, Apr. 2013.
[22]H. K. Lam, M. Narimani, H. Li, and H. Liu, “Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function,” IEEE Trans. Fuzzy Systems, vol. 21, no. 5, pp. 800-813, Oct. 2013.
[23]H. K. Lam, and L. D. Seneviratne, “Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching,” IET Control Theory & Applications, pp. 1689-1697, 2011.
[24]H. K. Lam, “Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions,” IEEE Trans. Fuzzy Systems, pp. 588-593, 2011.
[25]H. K. Lam, and S. H. Tsai, “Stability analysis of polynomial fuzzy-model-based control systems with mismatched premise membership functions,” IEEE Trans. Fuzzy Systems, pp. 223-229, 2014.
[26]H. K. Lam, L. Wu, and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, pp. 511-524, 2015.
[27]S. Prajna, A. Papachristodoulou and P.A. Parrilo,, “Introducing SOSTOOLS: a general purpose sum of squares programming solver,” in Proc. IEEE CDC, 2002, pp. 741-746

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊