|
[1]我國再生能源發電概況(2017, July. 1) [Online]. Available: http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8 [2]J. Kim, and C. Kim, “A DC-DC boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,” IEEE Trans. Power Electronics, vol. 28, no. 8, pp. 3827-3833, 2013. [3]H. C. Chen, and W. J. Lin, “MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converter,” IEEE Trans. Power Electronics, vol. 29, no. 1, pp. 29-35, 2014.. [4]A. Urtasun, and D. D.-C. Lu, “Control of a single-switch two-input buck converter for MPPT of two PV strings,” IEEE Trans. Industrial Eletronics, vol. 62, no. 11, pp. 7051-7060, 2015. [5]S. Stanzione, C. van Liempd, R. van Schaijk, Y, Naito, F. Yazicioglu, and C. Van Hoof “A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electronic energy harvesters,” IEEE Journal. Solid-State Circuits, vol. 48, no. 12, pp. 3002-3010, 2013. [6]T. F. Wu, C. L. Kuo, K. H. Chen, W. R. Chang, and Y. D. Lee, “Integretion and operation of a single phase bidirectional inverter with two buck/boost MPPTs for DC-distribution applications,” IEEE Trans. Power Electronics, vol. 28, no. 11, pp. 5098-5106, 2013. [7]K. Kim, K. Lee, Y. Choi, and G. Cho, “A study on the control of buck-boost converter using newton-method MPPT,” in Proc. IEEE ICEMS, 2013, pp. 329-333. [8]S. K. Kollimalla, and M. K. Mishra, “A novel adaptive P&O MPPT algorithm considering sudden changes in the irradiance” IEEE Trans. Energy Conversion, vol. 29, no. 3, pp. 602-610, 2014. [9]M. Killi, and S. Samanta, “Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 62, no. 9, pp. 5549-5559, 2015 [10]A. A. Nafeh, F. H. Fahmy, O. A. Mahgoub, and E. M. El-Zahab, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electronics, vol. 16, no. 1, pp. 46-54, 2001. [11]A. Garrigo, J. M. Blanes, J. A. Carrasco, and J. B. Ejea, “Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation,” Renewable Energy, vol. 32, pp. 1059–1076, 2007. [12]A. Chikh, and A. Chandra, “An optimal maximum power point tracking algorithm for PV systems with climatic parameters estimation,” IEEE Trans. Sustainable Energy, pp. 644-652, 2015. [13]H. Renaudineau, F. Donatantonio, J. Fontchastagner, G. Petrone, G. Spagnuolo, J. P. Martin, and S. Pierfederici, “A PSO-based global MPPT technique for distributed PV power generation,” IEEE Trans. Industrial Electronics, pp. 1047-1058, 2015. [14]K. Sundareswaran, S. Peddapati, and S. Palani, “MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies,” IEEE Trans. Energy Conversion, vol. 29, no. 2, pp. 463-472, 2014. [15]S. Tang, Y. Sun, Y. Chen, Y. Zhao, Y. Yang, and W. Szeto, “An enhanced MPPT method combining fractional-oder and fuzzy logic control,” IEEE Journal of Photovoltaics, vol. 7, no. 2, pp. 640-650, 2017. [16]S. F. Derakhshan, A. Fatehi, and M. G. Sharabiany, “Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI,” IEEE in Trans. Cybernetics, Vol. 44, no. 12, pp. 2557-2567, 2014. [17]C.S. Chiu, “T-S fuzzy maximum power point tracking control of solar power generation systems,” IEEE Trans. Energy Conversion, vol. 25, no. 4, pp. 1123-1132, Dec. 2010. [18]C. S. Chiu, and Y.L. Ouyang, “Robust maximum power tracking control of uncertain photovoltaic systems: a unified T-S fuzzy model-based approach,” IEEE Trans. Control Systems Technology, vol. 19, no. 6, pp. 1516-1526, Nov. 2011 [19]K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 17, no. 4, pp. 911-922, Aug. 2009. [20]K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, “Polynomial fuzzy observer designs: a sum-of-squares approach,” IEEE Trans. Systems, vol. 42, no. 5, pp. 1330-1342, Oct. 2012. [21]H. K. Lam, and J. C. Lo, “Output regulation of polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, vol. 21, no. 2, pp. 262-274, Apr. 2013. [22]H. K. Lam, M. Narimani, H. Li, and H. Liu, “Stability analysis of polynomial-fuzzy-model-based control systems using switching polynomial Lyapunov function,” IEEE Trans. Fuzzy Systems, vol. 21, no. 5, pp. 800-813, Oct. 2013. [23]H. K. Lam, and L. D. Seneviratne, “Stability analysis of polynomial fuzzy-model-based control systems under perfect/imperfect premise matching,” IET Control Theory & Applications, pp. 1689-1697, 2011. [24]H. K. Lam, “Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions,” IEEE Trans. Fuzzy Systems, pp. 588-593, 2011. [25]H. K. Lam, and S. H. Tsai, “Stability analysis of polynomial fuzzy-model-based control systems with mismatched premise membership functions,” IEEE Trans. Fuzzy Systems, pp. 223-229, 2014. [26]H. K. Lam, L. Wu, and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model-based control systems,” IEEE Trans. Fuzzy Systems, pp. 511-524, 2015. [27]S. Prajna, A. Papachristodoulou and P.A. Parrilo,, “Introducing SOSTOOLS: a general purpose sum of squares programming solver,” in Proc. IEEE CDC, 2002, pp. 741-746
|