跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱昱阩
研究生(外文):Chiu, Yu-Sheng
論文名稱:應用操作模態法於工具機主軸適應性轉速切削技術之研發
指導教授:鄭志鈞
指導教授(外文):Cheng, Chih-Chun
口試委員:黃以文黃順發
口試委員(外文):Hwang, Yii-WenHwang, Shun-Fa
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:操作模態分析法顫振顫振穩定界線圖切削力
外文關鍵詞:stability lobe diagramoperational modal analysisnatural frequencyaccelerometerdynamometerAngular velocity vold-kalman filtering order tracking
相關次數:
  • 被引用被引用:3
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:2
本論文以訊號量測及操作模態分析法(Operational modal analysis, OMA)為基礎,發展兩項工具機關鍵技術;第一項是工具機最佳切削轉速估測技術;第二項是切削力估測技術。
現今工具機朝加工高效率、高轉速、高材料移除率及高精度等發展,此時易因不好的切削轉速而導致顫振(Chatter)發生,進一步影響切削表面及刀具磨耗等問題,因此本研究發展工具機最佳切削轉速預估技術以避免此問題產生。首先鑑別工具機停機狀態之自然頻率、阻尼比以製作顫振穩定界線圖(Stability lobe diagram, SLD),從中獲得初始轉速及切削深度。於初始轉速切削時,以OMA鑑別含切削阻抗之切削系統(含主軸、刀柄、刀具、及工件)自然頻率與阻尼比,並更新顫振穩定界線圖及調變估測轉速,如能周而復始上述步驟,才能使工具機維持穩定切削狀態,此技術經實驗驗證得知考慮切削阻抗進行轉速估測,才能符合真實切削狀況及避免顫振發生,並提升切削表面及延長刀具壽命。切削力(Cutting force)被應用來觀察材料切削性質、顫振監測及預估刀具磨耗等問題。一般量測切削力的方法是使用動力計或透過其他感測裝置進行間接式切削力估測,但此兩方法有價格昂貴、架設不便及可靠度等問題,因此本技術提出以加速規進行切削力估測,以改善上述問題。本技術首先使用實驗模態分析法(Experimental modal analysis, EMA)獲得主軸-刀尖點之轉移函數,並於切削過程中透過主軸上端之加速規訊號與主軸-刀尖點之轉移函數進行切削力估測,接著透過弗德-卡曼濾波階次追蹤濾波器(Angular velocity vold-kalman filtering order tracking, AV VKF-OT)過濾非轉速及刀刃之倍頻以還原真實之切削力。本技術經實驗驗證,得知估測之切削力與動力量測之切削力大小相近,且能還原刀具撞擊工件之切削力波形。
Two techniques for machine tools based on the operational modal analysis (OMA) are developed in this study. The first is a stable machining technique using adaptive spindle speed. The second is the cutting force estimation technique using frequency response functions.
For the stable machining technique, the spindle speed is adjusted optimally according to an on-line machining stability analysis. With two accelerometers attached on the spindle, the dynamic characteristics, i.e. the natural frequency and the associated damping corresponding to the spindle-tool system coupled with the cutting impedance, are identified during the machining process using the operational modal analysis (OMA). With this information, the stability lobe diagram (SLD) which determines the optimal spindle speed is obtained and then the spindle speed is on-line adjusted accordingly. This proposed adaptive spindle speed machining technique is integrated with CNC controller and its performance in machining is assessed experimentally.
For the cutting force estimation technique, the purpose is to estimate the cutting force accurately suing accelerometers instead of pricy dynamometers. A frequency transfer function between the force acting on the cutting tool tip and the acceleration on the spindle is determined first using traditional experimental modal analysis (EMA). With this transfer function, the cutting force is then obtained during the machining by measuring the spindle acceleration. Angular velocity vold-kalman filtering order tracking (AV VKF-OT) is utilized to filter out the frequency component induced by the vibration uncorrelated to the cutting force. The cutting force obtained by the proposed method is compared to that measured directly by the dynamometers during the machining to assess the accuracy of the proposed technique. Results show that the estimated cutting force has a similar frequency spectra to that from dynamometer and both force magnitudes are in the same order.

目 錄 I
圖 目 錄 III
表 目 錄 VI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-3-1 操作模態分析方法 3
1-3-2 切削顫振 6
1-3-3 切削力估測 9
1-3-4 文獻回顧總結 10
1-4 論文架構 11
第二章 操作模態分析法理論與驗證 13
2-1 空間頻率域分解法 13
2-2 複數頻率域最小平方法 16
2-3 鑑別週期性訊號輸入之懸臂樑模態參數 20
2-3-1 理論與模擬 20
2-3-2 實驗與操作模態分析驗證 22
第三章 主軸最佳轉速估測技術 29
3-1 研究方法 29
3-2 銑削實驗規劃與設計 30
3-3 主軸及刀具系統靜態轉速估測 33
3-4 適應性切削(S50C) 40
3-5 操作模態分析法之改良 46
3-5-1 窄頻寬曲線擬合法 46
3-5-2 時變位移傳遞率法 48
第四章 切削力估測技術 53
4-1 切削力實驗規劃與設計 53
4-2 轉移函數估測法 56
4-3 切削力估測(AL6061) 錯誤! 尚未定義書籤。
4-3-1 應用AV VKF-OT過濾轉移函數之切削力估測 61
4-3-2 切削力大小與切削表面之關聯性 66
第五章 結論與研究建議 69
5-1 主軸適應性切削轉速估測技術 69
5-2 切削力估測技術 70
5-3 研究建議 71
參考文獻 74


[1]L. Zhang, R. Brincker and P. Andersen, “An overview of operational modal analysis: major development and issues,” Proceedings of IOMAC, vol. 1, pp. 179-190, 2005.
[2]F. R. Spitznogle, and A. H. Quazi, “Representation and analysis of time-limited signals using a complex exponential algorithm, ”Journal of the acoustical society of america, Vol. 47, No. 5, pp. 1150-1155, 1970.
[3]S. R. Ibrahim, E. C. Mikulcik, “A Time domain modal vibration test technique,” Shock and vibration bulletin, 43, pp. 21-37(Section 1), 1973.
[4]G. H. James, T. G. Carne, J. P. Lauffe and A.R. Nard, “Modal testing using natural excitation,” Proceedings of IMAC, vol.10, pp. 1209-1216, 1992.
[5]L. M. Zhang, “On the two-stage time domain modal identification,” Proc. Of IMAC XXI, 2003.
[6]P. Andersen, “Identification of civil engineering structures using vector ARMA models,” Ph.D. Thesis, Aalborg University, Denmark, 1997.
[7]K. S. Arun and S. Y. Kung, “Balanced approximation of stochastic system,” SIAM journal on matrix Analysis and application, vol. 11, No.1, pp. 42-68, 1990.
[8]P. V. Overschee and B. D. Moor, “Subspace identification for linear systems:theory implementation applications,” Kluwer academic publishers, 1996.
[9]R. Brincker, L. M. Zhang and P. Anderson, “Modal identification from ambient response using frequency domain decomposition,” Proceedings of IMAC, vol. 18, pp. 625-630, 2000.
[10]R. Brincker, C. Ventura and P. Andersen, “Damping estimation by frequency domain decomposition,” IMAC XIX, Kissimmee, USA, 2001.
[11]L. M. Zhang, T. Wang and Y. Tamura, “Frequency-spatial domain decomposition technique with application to operational modal analysis of civil engineering structures,” IOMAC, Copenhagen, Denmark, April, 2005.
[12]B. Peeters, P. Guillaume, H. Auweraer, B. Cauberghe, P. Verboven and J. Leuridan, “Automotive and aerospace applications of the polyMAX modal parameter estimation method,” IMAC XXII, 2004.
[13]P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer and B. Peeters, “A poly-reference implementation of the least-squares complex frequency-domain estimator,” Proceedings of IMAC. Vol. 21. 2003.
[14]S. Gade, N. B. Møller, H. Herlufsen and H. K. Hansen, “Frequency domain techniques for operational modal analysis,” Proceedings of the 1st international operational modal analysis conference, 2005.
[15]N. J. Jacobsen, P. Andersen, and R. Brincker, “Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis,” International conference on noise and vibration engineering (ISMA), Leuven, Belgium, 2006.
[16]R. Brincker, P. Andersen and N. J. Jacobsen, “Automated frequency domain decomposition for operational modal analysis,” Proceedings of the 25th in-ternational modal analysis conference (IMAC), Orlando, Florida, 2007.
[17]C. Devriendt, G. De Sitter, S. Vanlanduit and P. Guillaume, “Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements,” Mechanical systems and signal processing 23.3, pp. 621-635, 2009.
[18]G. De Sitter, C. Devriendt and P. Guillaume, “Transmissibility-based operational modal analysis: Enhanced stabilization diagrams,” Shock and vibration 19.5, pp. 1085-1097, 2012.
[19]C. Devriendt, G. De Sitter, T. D. Troyer and P. Guillaume, “On the use of transmissibility functions in operational modal analysis: an overview of the method and an introduction to recent developments and future work,” IOM-AC'11 – 4th International operational modal analysis conference, Istanbul, Turkey, 2011.
[20]C. Devriendt, G. D. Sitter and P. Guillaume, “Operational modal analysis in the presence of multiple arbitrary ambient forces using multivariable transmissibilities,” IOMAC'09 – 3rd International operational modal analysis conference, Ancona, Italy, 2009.
[21]C. Devriendt and P. Guillaume, “The use of transmissibility measurements in output-only modal analysis,” Mechanical systems and signal processing 21.7, pp. 2689-2696, 2007.
[22]C. Devriendt and P. Guillaume, “Identification of modal parameters from transmissibility measurements,” Journal of sound and vibration 314.1, pp. 343-356, 2008.
[23]A.I.Gómez and J. E. Laier, “Operational modal analysis using SVD of power spectral density transmissibility matrices,” Mechanical systems and signal processing 46.1, pp. 129-145, 2012.
[24]I. Zaghbani and V. Songmene, “Estimation of machine-tool dynamic parameters during,” International journal of machine tools and manufacture, 49, pp. 947-957, 2009.
[25]M. Siddhpura and R. Paurobally, “A review of chatter vibration research in turning,” International journal of machine tools and manufacture 61, pp. 27-47, 2012.
[26]F. Taylor, “On the art of cutting metals,” Transactions of ASME 28, 1907.
[27]S. A. Tobias, W. Fishwick, “The chatter of lathe tools under orthogonal cutting conditions,” Transactions of ASME 80, pp.1079–1088, 1958.
[28]J. Tlusty, M. Polacek, “The stability of machine tools against self-excited vibrations in machining,” Proceedings of the international research in production engineering conference, Pittsburgh, PA, ASME, New York, pp. 465–474, 1963.
[29]M. M. Nigm, “A method for the analysis of machine tool chatter,” International journal of machine tool design and research 21, pp. 251–261, 1981.
[30]M. Eynian, Y. Altintas, “Chatter stability of general turning operations with process damping,” Journal of manufacturing science and engineering 131, 2009.
[31]J. R. Baker, K. E. Rouch, “Use of finite element structural models in analyzing machine tool chatter,” Finite elements in analysis and design 38, pp. 1029–1046, 2002.
[32]R. Mahdavinejad, “Finite element analysis of machine and workpiece instability in turning,” International journal of machine tools and manufacture 45, pp. 753–760, 2005.
[33]C. Brecher, F. Klocke, S. Witt, P. Frank, “Methodology for coupling a FEAbased process model with a flexible multi-body simulation of a machine tool,” 10th CIRP International workshop on modeling of machining operations, Reggio Calabria, Italy, Vol. 27. 2007.
[34]I. N. Tansel, “Modelling 3-D cutting dynamics with neural networks,” Inter-national journal of machine tools and manufacture 32, pp. 829–853, 1992.
[35]C. L. Zhang, X. Yue, Y. T. Jiang, W. Zheng, “A hybrid approach of ANN and HMM for cutting chatter monitoring,” Advanced materials research 97, pp. 3225–3232.2010.
[36]R. Du, M. Elbestawi, S. Li, “Tool condition monitoring in turning using fuzzy set theory,” International journal of machine tools and manufacture 32, pp. 781–796, 1992.
[37]J. Tlusty, G. C. Andrews, “A critical review of sensors for unmanned machining,” CIRP Annals—manufacturing technology 32, pp. 563–572, 1983.
[38]K. Zhu, Y. S. Wong, G. S. Hong, “Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results,” International journal of machine tools and manufacture 49, pp. 537–553, 2009.
[39]Y. Altintas, Manufacturing automation: Metal cutting mechanics, Machine tool vibrations, and CNC design, Cambridge University Press, 2000.
[40]G. Byrne, D. Dornfeld, I. Inakaki, G. Ketteler, W. Koenig, R. Teti, “Tool condition monitoring - The status of research and industrial application,” Annals of CIRP, vol. 44, No.2, pp. 541-567, 1995.
[41]M. Santochi, G. Dini, G. Tantussi, “A sensor integrated tool for cutting force monitoring,” Annals of CIRP, vol. 46, No.1, pp. 49-52, 1997.
[42]H. Aoyama, I. Inakaki, I. Suda, H. Ohzeki, “Prediction of tool wear and tool failure in milling by utilizing magnetostrictive torque sensor,” Proc. Of the NAMRC XXVI conference, Atlanta, GA, USA, 1998.
[43]D.A. Smith, S. Smith, J. Tlusty, “High performance milling torque sensor,” ASME J, vol. 120, No.3, pp. 504-510, 1998.
[44]G. Pritschow, J. Bretschneider, S. Fritz, “Reconstruction of process force within digital servodrive systems,” Production Engineering, vol. 4, No.1, pp. 73-78, 1999.
[45]H. Shinno, H. Hashizume, H. Yoshioka, “Sensor-less monitoring of cutting force during ultraprecision machining ,” Annals of CIPE, vol. 52, No. 1, pp. 303-306, 2003.
[46]陳榮長,懸臂樑的振動分析與控制,國立雲林科技大學機械工程學系碩士論文,2007。
[47]W. Weijtjens, J. Lataire, C. Devriendt, P. Guillaume, “Dealing with periodical loads and harmonics in operational modal analysis using time-varying transmissibility functions,” Mechanical systems and signal processing, vol. 49, pp. 154-164, 2014.
[48]P.C. Tsai, C.C. Cheng, Y.C. Hwang, “Ball screw preload loss detection using ball pass frequency,” Mechanical systems and signal processing, vol. 48, pp. 77-91, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊