|
[1] Abia, L., López-Marcos, J. C., Martínez, J.: The Euler method in the numerical integration of reaction-diffusion problems with blow-up. Appl. Numer. Math. 38, 287–313 (2001). [2] Bandle, H., Brunner, C.: Blow-up in diffusion equations: a survey. J. Comp. Appl. Math. 97, 3–22 (1998). [3] Chen, Y.-G.: Blow-up solutions to a finite difference analogue of u_t = ∆u + u^{1+α} in N-dimensional ball. Hokkaido Math. J. 21, 447–474 (1992). [4] Cho, C.-H.: On the computation of numerical blow-up time. Jpn. J. Indust. Appl. Math. 30, 331–349 (2013). [5] Cho, C.-H., Hamada, S., Okamoto, H.: On the finite difference approximation for a parabolic blow-up problem. Jpn J. Indust. Appl. Math. 24, 131–160 (2007). [6] Cho, C.-H., Okamoto, H.: A finite difference scheme for an axisymmetirc nonlin-ear heat equation with blow-up. In preparation. [7] Friedman, A., Giga, Y.: A single point blow-up for solutions of semilinear parabolic systems. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 34, 65–79 (1987). [8] Fujita, H.: On the blowing up of solutions to the Cauchy problem for u_t = ∆u + u^{1+α}. J. Faculty Science, U. of Tokyo 13, 109–124 (1966). [9] Groisman, P.: Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions. Computing 76, 325–352 (2006). [10] Levine, H. A.: The role of critical exponents in blow up theorems. SIAM Rev. 32, 262–288 (1990). [11] Nakagawa, T.: Blowing up of a finite difference solution to u_t = u_{xx} + u^2. Appl. Math. Optim. 2, 337–350 (1976). [12] Souplet, P.: Single-point blow-up for a semilinear parabolic system. J. Eur. Math. Soc. 11, 169–188 (2009). [13] Werssler, F.: Single point blowup of similinear initial value problems. J. Differ. Equ. 55, 202–224 (1984).
|