跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王承遠
研究生(外文):WANG, CHENG-YUAN
論文名稱:具有光熱分離及熱轉電特性之電激發光元件的創意設計與製作之研究
論文名稱(外文):A Study on Innovative Design and Fabrication of Electroluminescent Device with Light-Thermal Separator and Thermoelectric Generator Characteristics
指導教授:王欽戊
指導教授(外文):WANG, CHING-WU
口試委員:周卓煇許渭州王朝欽周榮泉王欽戊
口試委員(外文):JOU, JWO-HUEIHSU, WEI-CHOUWANG, CHUA-CHINCHOU, JUNG-CHUANWANG, CHING-WU
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:電激發光螢光粉鈦酸鋇氣凝膠光熱分離熱轉電
外文關鍵詞:ElectroluminescencePhosphorsBaTiO3AerogelLight-Thermal separatorThermoelectric Generator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究之電激發光元件分為三層結構:螢光層、介電層與氣凝膠層,首先探討不同濃度與厚度之螢光層對交流電壓與發光強度之特性;隨即,將最佳條件螢光層添加一介電層,探討不同濃度與厚度之介電層對電激發光元件的發光強度之影響,取得最佳條件發光層與介電層;再來,採用不同濃度與厚度之氣凝膠層,進一步探討添加入氣凝膠層對電激發光元件之影響;最後,結合熱轉電模組與電激發光元件,並實際製作出一具有光熱分離與熱轉電特性之電激發光元件。
In this study, the designed electroluminescent device is divided into three layers: the phosphor layer, the dielectric layer and the aerogel layer. First, the characteristics related to AC voltage and luminous intensity of the phosphor layer under different concentrations and thicknesses are studied. Thereafter, a dielectric layer is added to the obtained optimal conditions of the phosphor layer from previous section to explore the different concentrations and thicknesses of the dielectric layer on the luminous intensity of the electroluminescent device and to obtain the optimal conditions for both the phosphor layer and the dielectric layer. Then, the aerogel layer with different concentrations and thicknesses was used to further investigate the effect of its addition on the electroluminescent device. Finally, by combining the thermoelectric generator module and the electroluminescent device, an electroluminescent device is produced with light-thermal separator and thermoelectric generator characteristics.
Publications and Preprints
Abstract (in Chinese)
Abstract (in English)
Acknowledgement
Figure Caption
Table Caption
Contents

Chapter 1 Introduction
1.1 Background
1.2 Motivation
1.3 Organization of this thesis

Chapter 2 Literature Review
2.1 Aerogel
2.1.1 The introduction and history of Aerogel
2.1.2 Types of aerogel
2.1.3 The preparation of aerogel
2.1.4 The applications of aerogel
2.2 Phosphors
2.2.1 The introduction and history of phosphors
2.2.2 The luminous principle of phosphors
2.2.3 Types of phosphors excitation source
2.2.4 The applications of phosphors
2.3 Electroluminescence
2.3.1 The introduction and history of electroluminescence
2.3.2 The principle of electroluminescence
2.3.3 The structure of electroluminescent device
2.3.4 Types of electroluminescence
2.3.5 Advantages and disadvantages of electroluminescent device
2.4 Thermoelectric Generator
2.4.1 The introduction and history of Thermoelectric Generator
2.4.2 Thermoelectric chip

Chapter 3 Experimental Procedure
3.1 Experimental materials
3.2 Electroluminescence experiment of single phosphor layer
3.2.1 The preparation and coating of phosphor layer
3.2.2 Electroluminescence experiment of phosphor layer with different
concentration and thickness
3.3 Electroluminescence experiment of adding dielectric layer
3.3.1 The preparation and coating of dielectric layer
3.3.2 Electroluminescence experiment of adding dielectric layer with
different concentration and thickness
3.4 Electroluminescence experiment of adding aerogel layer
3.4.1 The preparation and coating of aerogel layer
3.4.2 Electroluminescence experiment of adding aerogel layer
3.5 The fabrication of electroluminescent device combining with
thermoelectric generator module
3.6 Experimental measurement

Chapter 4 Results and Discussion
4.1 Electroluminescence analysis of phosphor layer
4.2 Electroluminescence analysis of dielectric layer
4.3 Electroluminescence analysis of aerogel layer
4.4 Data analysis of electro-optical properties of electroluminescent
devices combining with thermoelectric generator module

Chapter 5 Conclusions and future prospects
5.1 Conclusions
5.2 Future prospects

References
Figures
Tables
Biography
[1]. P. Atkins and J. D. Paula, “Physical chemistry for the life sciences” 2nd ed., W. H. Freeman and Company, p. 13, (2011).
[2]. S. S. Kistler, “Coherent expanded aerogels and jellies”, Nature, Vol. 127, No. 3211, pp. 741-741, (1931).
[3]. 魏得育、呂世源: “最輕的固體-氣凝膠”,科學發展,Vol. 402,pp. 60-65, (2006)。
[4]. 王天路、劉旭峰: “氧化矽氣凝膠之應用”,化工資訊與商情,Vol. 6,No. 12, pp. 90-96,(2003)。
[5]. P. B. Sarawade, J. K. Kim, H. K. Kim, and H. T. Kim, “High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure”, Applied Surface Science, Vol. 254, No. 2, pp. 574-579, (2007).
[6]. 盧偉珠: “高效的金屬氧化物氣凝膠觸媒”,化工資訊,Vol. 48,pp. 58-65,(2001)。
[7]. C. M. Castilla and F. J. Maldonado, “Carbon aerogels for catalysis applications: an overview”, Carbon, Vol. 43, No. 3, pp. 455-465, (2005).
[8]. N. Husing and U. Schubert, “Aerogels-airy materials: chemistry, structure, and properties”, Angew. Chem. Int. Ed., Vol. 37, No. 1, pp. 22-45, (1998).
[9]. C. Pierre and G. M. Pajonk, “Chemistry of aerogels and their applications”, Chem. Rev., Vol. 102, No.11, pp. 4243-4265, (2002).
[10]. 羅靖堯: “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”,國立成功大學化學研究所碩士論文,(2003)。
[11]. J. K. Hong, H. S. Yang, M. H. Jo, H. H. Park, and S. Y. Choi, “Preparation and characterization of porous silica xerogel film for low dielectric application”, Thin Solid Films, Vol. 308-309, No.1, pp. 495-500, (1997).
[12]. L. Luoa, A. T. Coopera, and M. Fan, “Preparation and application of nanoglued binary titania–silica aerogel”, Journal of Hazardous Materials, Vol. 161, No. 1, pp. 175-182, (2009).
[13]. J. E. Fesmire, “Aerogel insulation systems for space launch applications”, Cryogenics, Vol. 46, No. 2-3, pp. 111-117, (2006).
[14]. 王書任、林仁鈞: “讓LED發光的功臣-螢光粉”,科學發展,Vol. 435, (2009)。
[15]. S. J. Dhoble, K. N. Shinde, H. C. Swart, and K. Park, “Phosphate phosphors for solid-state lighting”, Springer Berlin Heidelberg, Chapter 1, pp. 17-19, (2012).
[16]. A. Kitai, “Luminescent materials and applications”, John Wiley & Sons, Chapter 7, pp. 224-247, (1989).
[17]. G. Blasse and B.C. Grabmaier, “Luminescent materials”, Springer-Verlag, Chapter 2, pp. 1-37, (1994).
[18]. A. Kitai, “Luminescent materials and applications”, John Wiley & Sons, Chapter 1, pp. 19-22, (1989).
[19]. Y. Y. Zuo, W. J. Ling, and Y. H. Wang, “Synthesis and photoluminescence properties of YVO4:Eu3+, Al3+ phosphor”, J. Lumin., Vol. 132, No. 1, pp. 61-63, (2012).
[20]. L. Wang, Z. Lv, W. Kang, X. Shangguan, J. Shi, and Z. Hao, “Applications oriented design of Bi3+ doped phosphors”, Appl. Phys. Lett., Vol. 132, No. 151909, pp. 1-4, (2013).
[21]. P. F. Smet, I. Moreels, Z. Hens, and D. Poelman, “Luminescence in sulfides: a rich history and a bright future”, Materials, Vol. 3, No.4, pp. 2834-2883, (2010).
[22]. W. W. Piper and F. E. Williams, “Theory of electroluminecence”, Phys. Rev, Vol. 98, No. 6, pp. 1809-1813, (1955).
[23]. M. Bredol and H. S. Dieckhoff, “Materials for powder-based ac-electroluminescence”, Materials, Vol. 3, No. 2, pp. 1353-1374, (2010).
[24]. A. Kitai, “Luminescent materials and applications”, John Wiley & Sons, Chapter 7, pp. 226-227, (1989).
[25]. M. J. Russ and D. I. Kennedy, “The effects of double insulating layers on the electroluminescence of evaporated ZnS:Mn films”, J. Electrochem. Soc., Vol. 114, No. 10, p. 1066, (1967).
[26]. 盧冠名,“電激發光元件中發光層與絕緣層之黏結劑對發光性質之影響”,國立臺北科技大學材料工程研究所碩士學位論文,(2013)。
[27]. J. Heikenfeld and A. J. Steckl, “Low-cost display technology utilizing thick dielectric electroluminescent devices on glass substrates”, in Proc. SID Symp. Vehicle Displays, ISBN # 0966030761, pp. 12-15, Oct., (2001).
[28]. A. H. Kitai, “Solid state luminescence:theory, materials, and devices”, London: Chapman and Hall, Chapter 6, p.165, (1993).
[29]. S. Shionoya and W. M. Yen, “Phosphor handbook”, Florida:CRC Press, Chapter 8, p.583, (1999).
[30]. P. D. Rack, A. Naman, P. H. Holloway, S. S. Sun, and R. T. Tuenge, “Materials used in electroluminescent displays”, MRS Bulletin-Materials Research Society, Vol. 21, No. 3, pp.49-58, (1996).
[31]. M. Wang, Q. Zhang, W. Hao, and Z. X. Sun, “Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate”, Chemistry Central Journal, Vol. 5, No. 73, pp. 1-10, (2011).
[32]. M. Terry and P. Tritt, “Thermoelectric materials: holey and unholy semiconductors”, Science, Vol. 283, No. 5403, pp. 804-805, (1999).
[33]. M. Paulsson and S. Datta, “Thermoelectric effect in molecular electronics”, Physical Review B, Vol. 67, No. 24, pp. 1-4, (2003).
[34]. G. Chen and M. S. Dresselhaus, “Recent developments in thermoelectric materials”, International Materials Reviews, Vol. 48, No. 1, pp. 45-66, (2003).
[35]. A. W. Herwaarden, “The seebeck effect in silicon ICs”, Sensors and Actuators, Vol. 6, No. 4, pp. 245-254, (1984).
[36]. M. J. Huang, R. H Yen, and A. B. Wang, “The influence of the thomson effect on the performance of a thermoelectric cooler”, International Journal of Heat and Mass Transfer, Vol. 48, No. 2, pp. 413-418, (2005).
[37]. S. Lineykin and S. B. Yaakov, “User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems”, Journal of Refrigeration, Vol. 30, No. 5, pp. 798-804, (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top