跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅偉丞
研究生(外文):LO, WEI-CHENG
論文名稱:應用超頻譜影像技術研究1T/2H二硫化鉬薄膜之結構與組成
論文名稱(外文):Study of Structure and Composition of 1T / 2H MoS2 Thin Films via Hyperspectral Image Technology
指導教授:王祥辰
指導教授(外文):WANG, HSIANG-CHEN
口試委員:王祥辰張守進張文豪呂明諺呂明霈
口試委員(外文):WANG, HSIANG-CHENJHANG, SHOU-JINJHANG, WUN-HAOLYU, MING-YANLYU, MING-PEI
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:二硫化鉬超頻譜影像技術
外文關鍵詞:MoS2Hyperspectral Imaging Technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體工業的發展,學者們將目光聚焦在二維材料上,例如:二硫化鉬和二硒化鎢。在它們之中,二硫化鉬由於他獨特的特性尤其備受矚目。利用其二維特性、能帶結構、谷霍爾效應、非線性的光學特性,以及其快速的載子速度,使得二硫化鉬可以製作成光學檢測器。在我們的研究中,會使用正丁基鋰-正己烷溶液改變二硫化鉬的相位,從2H變成1T相位,1T相位二硫化鉬所製作的元件無論是跨導、載子遷移率、次臨限電壓等都優於2H相位所製作出的。
在製作元件之前,我們必須要先具備三點能力,第一是成長出大面積單晶的二硫化鉬薄膜,第二是能穩定地對二硫化鉬進行大面積地嵌入,第三則是能快速辨識二硫化鉬薄膜的層數分布,有鑑於現有的量測技術如顯微拉曼、AFM等都無法快速地分析大面積二硫化鉬薄膜,因此我們使用超頻譜影像技術來達成我們的目的。
在本次研究中我們使用化學氣相沉積法來生長少層數的二硫化鉬,同時使用溶液法來嵌入二硫化鉬改變其相位,並利用超頻譜影像技術來找到嵌入前後二硫化鉬的頻譜特徵,建立各別的超頻譜影像資料庫。

As the development of the semiconductor industry, two-dimensional materials such as MoS2, WSe2 have gain much attention by researchers. Among them, MoS2 is especially studied due to its unique properties. Utilizing its two dimensional property, energy gap structure, Halls effect, nonlinear optical property and fast carrier speed, MoS2 is the optimal material for optical detectors. In our study, 1.6M butyllithium solution in hexane is used to change the phase of MoS2 from 2H to 1T.1T phase MoS2 devices produce superior performance on transconductance, mobility, subthreshold over 2H phased MoS2 counterparts.
Before the creation of the MoS2 devices, there are three prerequisites that need to be met. First is the ability to grow large area of MoS2 monocrystalline thin film. Second is being able to stably embed large area of MoS2. Third is fast and accurately identify the layer distribution of MoS2 thin film. Due to the fact that currently measuring technique such as Raman, AFM can’t analyze large area of MoS2 thin film in desired speed, we apply Hyperspectral imaging technique instead to achieve our goal.
In this study, we apply CVD to grow few-layered MoS2 and apply chemically exfoliated MoS2 embedded chemically exfoliated MoS2 to change its phase. Hyperspectral imaging technique is then applied to identify the embedded MoS2 spectrum characteristic and build its spectrum database.

目錄 - 7 -
圖目錄 - 10 -
第一章 緒論 - 13 -
1-1 二硫化鉬薄膜之特性與應用 - 14 -
1-2 分析低層數二硫化鉬薄膜之方法 - 15 -
1-3 二硫化鉬薄膜在不同相位下之特性 - 18 -
1-4多頻譜研究之目的與方法 - 19 -
1-5 研究動機以及章節的相關規劃 - 20 -
第二章 理論 - 28 -
2-1 應用超頻譜影像技術量測二維材料 - 28 -
2-2 利用顯微影像的對比來檢測二硫化鉬之薄膜厚度 - 30 -
2-3 量測單層二硫化鉬薄膜的折射係數 - 31 -
2-4 如何改變二硫化鉬的相位 - 34 -
2-5 比較Rajesh與Fan團隊改變相位之差異性 - 36 -
第三章 實驗樣品與實驗方法 - 52 -
3-1 實驗樣品的製備 - 52 -
3-2 相位改變的實驗流程與方法 - 53 -
3-2-1 實驗流程 - 53 -
3-2-2 超頻譜影像技術(HSI) - 54 -
3-2-4 主成分分析法與主成分得分圖 - 58 -
3-2-5 XPS(X-ray Photoelectron Spectroscopy)原理介紹 - 59 -
3-2-6 AFM(Atomic Force Microscopy)分析 - 60 -
3-2-8 SEM(Scanning Electron Microscopy)分析 - 61 -
3-2-9 TEM(Transmitted Electron Microscopy)分析 - 62 -
第四章 實驗結果與討論 - 77 -
4-1 二硫化鉬之光學與材料特性量測 - 77 -
4-1-1 OM 量測 - 77 -
4-1-2 Raman 量測 - 78 -
4-1-3 AFM 量測 - 79 -
4-1-4 SEM 量測 - 79 -
4-1-5 XPS量測 - 80 -
4-2 超頻譜影像資料庫 - 80 -
4-2-1 不同層數二硫化鉬頻譜特徵資料庫建立 - 80 -
4-2-2 二硫化鉬層數分析與顏色標示 - 82 -
4-2-3 嵌入後二硫化鉬的顏色標示 - 83 -
4-2-4 未知層數的二硫化鉬輸入至超頻譜資料庫 - 83 -
第5章 結論與未來展望 - 102 -
參考文獻 - 104 -

[1]B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, and A.Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, 2011.
[2]K. F.Mak, C.Lee, J.Hone, J.Shan, and T. F.Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 2–5, 2010.
[3]C.Ataca, H.Şahin, and S.Ciraci, “Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure.pdf,” J. Phys. Chem. C, vol. 116, p. 8983−8999, 2012.
[4]X.Fan et al., “Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion,” Nano Lett., vol. 15, no. 9, pp. 5956–5960, 2015.
[5]R.Kappera et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater., vol. 13, no. 12, pp. 1128–1134, 2014.
[6]Y.Jung, Y.Zhou, and J. J.Cha, “Intercalation in two-dimensional transition metal chalcogenides,” Inorg. Chem. Front., vol. 3, no. 4, pp. 452–463, 2016.
[7]D.Voiry et al., “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.,” Nano Lett., vol. 13, no. 12, pp. 6222–7, 2013.
[8]H.Wang et al., “Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction,” Proc. Natl. Acad. Sci., vol. 110, no. 49, pp. 19701–19706, 2013.
[9]C.Lee, H.Yan, L. E.Brus, T. F.Heinz, J.Hone, andS.Ryu, “Anomalous lattice vibrations of single- and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695–2700, 2010.
[10]F.Xiong et al., “Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties,” Nano Lett., vol. 15, no. 10, pp. 6777–6784, 2015.
[11]H.Li et al., “From bulk to monolayer MoS2: Evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1385–1390, 2012.
[12]G.Ye et al., “Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction,” Nano Lett., vol. 16, no. 2, pp. 1097–1103, 2016.
[13]H.Li et al., “Optical identification of single- and few-layer MoS2 sheets,” Small, vol. 8, no. 5, pp. 682–686, 2012.
[14]H.Li et al., “Rapid and Reliable Thickness Identi fi cation of Two-Dimensional Nanosheets Using Optical Microscopy,” ACS Nano, no. Xx, pp. 10344–10353, 2013.
[15]Y. Y.Wang et al., “Thickness identification of two-dimensional materials by optical imaging,” Nanotechnology, vol. 23, no. 49, p. 495713, 2012.
[16]A.Castellanos-Gomez, N.Agrat, and G.Rubio-Bollinger, “Optical identification of atomically thin dichalcogenide crystals,” Appl. Phys. Lett., vol. 96, no. 21, 2010.
[17]R. W.Havener et al., “Hyperspectral imaging of structure and composition in atomically thin heterostructures-Supporting information,” Nano Lett., vol. 13, no. 8, pp. 3942–3946, 2013.
[18]L.Wu et al., “Sensitivity Improved SPR Biosensor Based on the MoS2/Graphene-Aluminum Hybrid Structure,” J. Light. Technol., vol. 35, no. 1, pp. 82–87, 2017.
[19]Q. H.Wang, K.Kalantar-Zadeh, A.Kis, J. N.Coleman, and M. S.Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, no. 11, pp. 699–712, 2012.
[20]H.-C.Wang et al., “Large-area few-layered graphene film determination by multispectral imaging microscopy,” Nanoscale, vol. 7, no. 19, pp. 9033–9039, 2015.
[21]H.Zhang et al., “Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence,” Sci. Rep., vol. 5, no. 1, p. 8440, 2015.
[22]Y.Li, N.Dong, S.Zhang, K.Wang, L.Zhang, andJ.Wang, “Optical identification of layered MoS2 via the characteristic matrix method,” Nanoscale, vol. 8, no. 2, pp. 1210–1215, 2016.
[23]G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, and M.Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111–5116, 2011.
[24]P. J.Mulhern, “Lithium intercalation in crystalline LixMoS2,” Can. J. Phys., vol. 67, p. 1049, 1989.
[25]A. N.Enyashin and G.Seifert, “Density-functional study of LixMoS2 intercalates (0⩽x⩽1),” Comput. Theor. Chem., vol. 999, no. 343, pp. 13–20, 2012.
[26]M.Chhowalla, H. S.Shin, G.Eda, L.-J.Li, K. P.Loh, and H.Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263–275, 2013.
[27]M.Kertesz and R.Hoffmann, “Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides,” J. Am. Chem. Soc., vol. 106, no. 12, pp. 3453–3460, 1984.
[28]J.Shuai, H. D.Yoo, Y.Liang, Y.Li, Y.Yao, and L. C.Grabow, “Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing,” Mater. Res. Express, vol. 3, no. 6, p. 64001, 2016.
[29]M. B.Dines, “Lithium intercalation via -Butyllithium of the layered transition metal dichalcogenides,” Mater. Res. Bull., vol. 10, no. 5, pp. 287–291, 1975.
[30]P.Joensen, R. F.Frindt, and S. R.Morrison, “Single-layer MoS2,” Mater. Res. Bull., vol. 21, no. 4, pp. 457–461, 1986.
[31]D.Yang, S. J.Sandoval, W. M. R.Divigalpitiya, J. C.Irwin, and R. F.Frindt, “Structure of single-molecular-layer MoS2,” Phys. Rev. B, vol. 43, no. 14, pp. 12053–12056, 1991.
[32]H.Li, J.Wu, Z.Yin, and H.Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets,” Acc. Chem. Res., vol. 47, no. 4, pp. 1067–1075, 2014.
[33]Y.Zhao et al., “Inter layer Breathing and Shear Modes in Few-Trilayer MoS2 and WSe2,” Nano Lett., vol. 13, no. 3, pp. 1007–1015, 2013.
[34]A.Splendiani et al., “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, 2010.
[35]H.Li, X.Qi, J.Wu, Z.Zeng, J.Wei, and H.Zhang, “Investigation of MoS2 and Graphene Nanosheets by Magnetic Force Microscopy **,” no. 3, pp. 2842–2849, 2013.
[36]Z.Yin et al., “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, 2012.
[37]O.Lopez-Sanchez, D.Lembke, M.Kayci, A.Radenovic, and A.Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol., vol. 8, no. 7, pp. 497–501, 2013.
[38]J.Jeon et al., “Layer-controlled CVD growth of large-area two-dimensional MoS2 films,” Nanoscale, vol. 7, no. 5, pp. 1688–1695, 2015.
[39]D.Dumcenco et al., “Large-Area Epitaxial Monolayer MoS2,” ACS Nano, vol. 9, no. 4, pp. 4611–4620, 2015.
[40]Y. H.Lee et al., “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320–2325, 2012.
[41]S.Najmaei et al., “Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers,” Nat. Mater., vol. 12, no. 8, pp. 754–759, 2013.
[42]A. M.van derZande et al., “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater., vol. 12, no. 6, pp. 554–561, 2013.
[43]S.Najmaei et al., “Electrical transport properties of polycrystalline monolayer molybdenum disulfide,” ACS Nano, vol. 8, no. 8, pp. 7930–7937, 2014.
[44]G.Plechinger et al., “A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy,” no. 100, pp. 1–7, 2013.
[45]H.Schmidt et al., “Transport properties of monolayer MoS2 grown by chemical vapor deposition,” Nano Lett., vol. 14, no. 4, pp. 1909–1913, 2014.
[46]V.Forsberg et al., “Exfoliated MoS2 in Water without Additives,” PLoS One, vol. 11, no. 4, p. e0154522, 2016.
[47]S.Jiménez Sandoval, D.Yang, R.Frindt, and J.Irwin, “Raman study and lattice dynamics of single molecular layers of MoS2,” Phys. Rev. B, vol. 44, no. 8, pp. 3955–3962, 1991.
[48]D. L.Hartmann, “Section 9: Wavelets,” ATMS 552 Notes, pp. 255–275, 2016.
[49]W. J.Krzanowski, Principles of multivariate analysis : a user’s perspective. Oxford University Press, 2000.
[50]K.Fukunaga, “Statistical Pattern Recognition,” Pattern Recognit., vol. 22, no. 7, pp. 833–834, 1990.
[51]H.Hotelling, “Analysis of a complex of statistical variables into principal components.,” J. Educ. Psychol., vol. 24, no. 6, pp. 417–441, 1933.
[52]B.Wealth, “National Science Council ,” Science (80-. )., vol. 9012, 2001.
[53]G.Binnig, “原子力 顯微鏡的基本介紹 1981,” pp. 18–21, 1986.
[54]羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹 – SEM. 2003.
[55]羅聖全, 研發奈米科技的基本工具之一 電子顯微鏡介紹 – TEM. 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top