跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓佳璋
研究生(外文):HAN, CHIA-CHANG
論文名稱:影響採用智慧家庭安全防護系統意圖之因素
論文名稱(外文):The Factors Influencing Intentions to Use Smart Home Security Systems
指導教授:阮金聲阮金聲引用關係
指導教授(外文):ROAN, JIN-SHENG
口試委員:張碩毅吳英隆阮金聲
口試委員(外文):CHANG, SHE-IWU, ING-LONGROAN, JIN-SHENG
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理學系碩士在職專班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:物聯網智慧家庭安全防護現狀偏差
外文關鍵詞:Internet of ThingsSmart HomeSecurityStatus Quo Bias
相關次數:
  • 被引用被引用:1
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著網際網路的快速發展,帶來了物聯網的時代,其商機所帶來的各類型應用裝置也對民眾產生重大影響,而智慧家庭則是其中一項,不論在任何時間、地點,均能隨時查看家中動態,使民眾更加快速取得資訊,進而改變了以往的行為模式,智慧家庭的廣泛應用,更可讓民眾隨時隨地取得家中安全防護的現況。因此,瞭解哪些因素讓民眾採用智慧家庭安全防護系統,透過文獻彙整提出研究模式,以探討影響民眾採用智慧家庭安全防護系統意圖之因素。
本研究採用網路問卷調查收集資料樣本,並連結於智慧家庭相關論壇、社群網站、PTT等,共計有效問卷234份。資料分析方法採結構方程模式,並以SPSS 22.0與SmartPLS 3.0作為主要統計分析工具,驗證研究模型中各變數的因果關係。
研究結果顯示,個人會因習慣、沉沒成本與轉換成本產生慣性,造成現狀偏差,使慣性的部分中介效果,對知覺易用性產生負向顯著的影響,對相對優勢則有間接影響而非直接影響,而慣性對採用意圖與調節主觀規範至採用意圖間,則無顯著的影響,另外,知覺安全威脅、知覺財物威脅、知覺易用性、相對優勢、主觀規範與資訊品質信任等科技接受相關因素,則具有正向顯著影響採用意圖。
期望藉由本研究之結論及建議,能做為產官學界對於智慧家庭安全防護系統之參考,帶來其貢獻之處。
With the rapid development of the internet, it has brought about the age of the “Internet of Things.” Under the internet of things, there are various types of applications, which are generated by its business opportunities, causing great influences on the public. One of the examples that belongs to this group is smart home security system. No matter where and when a person is, it is possible for him/ her to monitor what happens at home, which enables the public to get the information immediately; thus, changes people’s behavior patterns. Besides, the widely-applied smart home system makes it easier for the masses to know the security condition at home beyond the limit of time and location. Therefore, through analyzing the references, the research model was proposed in order to examine the reasons why people intend to use the smart home security system.
The data samples in this research were collected through investigating the online questionnaires, the online forums, social networking sites, and PTT that were related to the home security system. In total, there were 234 valid questionnaires. As for the data analysis method, this research was developed by the structural equation model. In order to analyze the statistics, SPSS 22.0 and SmartPLS 3.0 were used as the main accesses to verifying the cause and effect relationship between each variable in the research model.
The result indicated that personal habits, the sunk costs, and the transition costs were the reasons why the inertia was generated. Furthermore, the perceived ease of use was partially mediated by the current deviation attributed from the inertia. On the other hand, the inertia had little influence on intending to use the system and adjusting the subjective norm. On the contrary, the perceived safety threat, the perceived financial threat, the perceived ease of use, the relative advantage, the subjective norm, and the information quality trust significantly influenced the intention to use the system positively.
All in all, with the results and suggestions, it is anticipated that this research serves as a valid reference for the smart home security system, making great contributions to the industry-government-university field.

目 錄 I
表目錄 III
圖目錄 IV
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 2
第三節 研究流程 4
第四節 預期成果與貢獻 5
第二章 文獻探討 6
第一節 智慧家庭 6
第二節 現狀偏差 10
第三節 科技接受相關理論 13
第四節 慣性 16
第五節 習慣 18
第六節 知覺威脅 19
第三章 研究方法 20
第一節 研究架構 20
第二節 研究假說 21
第三節 研究變數操作型定義與衡量 27
第四節 研究設計 28
第四章 資料分析方法 33
第一節 敘述性統計分析 33
第二節 信度分析 37
第三節 效度分析 38
第四節 基本假說檢定 41
第五節 結構方程模式分析 43
第五章 結論與建議 52
第一節 研究結論 52
第二節 研究貢獻 57
第三節 研究限制 58
第四節 未來研究建議 59
參考文獻 60
一、中文文獻 60
二、英文文獻 61
三、網路部分 67
附錄 研究問卷 68
一、中文文獻
王冠茹 (民103)。行動票券使用意圖之研究:現狀偏好理論觀點。銘傳大學企業管
理學系碩士論文,未出版,台北市。
洪浩雲 (民99)。公部門資訊系統導入使用者抗拒之研究。淡江大學資訊管理學
系碩士論文,未出版,台北市。
洪婉淇 (民99)。物聯網智慧居家安全監控系統之設計,高苑科技大學資訊科技
應用研究所碩士論文,未出版,高雄市。
廖述賢、畢吳琛與劉志堂. (民93年5月)。知識慣性、組織學習、組織創新之關聯
性研究。2004 科技整合管理國際研討會,289-314,臺北市。
楊榮森 (民97)。老年人的跌倒與骨折預防。台灣老年醫學暨老年學,3,78-90。
鄭融 (民104)。消費者對於社會型企業產品購買意圖之研究,國立中央大學企業
管理學系碩士論文,未出版,桃園市。

二、英文文獻
Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665–694.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action-Control: From Cognition to Behavior (pp. 1l-39). Heidelberg: Springer.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Altshuller, G. (1997). Principles: TRIZ Keys to Technical Innovation. Worcester, Massachusetts. Technical Innovation Center.
Anderson, R. E., & Srinivasan, S. S. (2003). E‐satisfaction and e‐loyalty: A contingency framework. Psychology & Marketing, 20(2), 123-138.
Bagozzi, R. P., Baumgartner, H., & Yi, Y. (1992). State versus action orientation and the theory of reasoned action: An application to coupon usage. Journal of Consumer Research, 18(4), 505-518.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 3.
Baraka, K., Ghobril, M., Malek, S., Kanj, R., & Kayssi, A. (2013, June). Low cost arduino/android-based energy-efficient home automation system with smart task scheduling. In Computational Intelligence, Communication Systems and Networks (CICSyN), 2013 Fifth International Conference on (pp. 296-301). IEEE.
Bawa, K. (1990). Modeling inertia and variety seeking tendencies in brand choice behavior. Marketing Science, 9(3), 263-278.
Beatty, S. E., & Smith, S. M. (1987). External search effort: An investigation across several product categories. Journal of Consumer Research, 14(1), 83-95.
Bem, D. J. (1972). Self-perception theory. Advances in Experimental Social Psychology, 6, 1-62.
Boss, S. R., Galletta, D. F., Lowry, P. B., Moody, G. D., & Polak, P. (2015). What do users have to fear? Using fear appeals to engender threats and fear that motivate protective security behaviors. MIS Quarterly, 39(4), 837-864.
Brown, A. L., & Kagel, J. H. (2009). Behavior in a simplified stock market: the status quo bias, the disposition effect and the ostrich effect. Annals of Finance, 5(1), 1-14.
Bulgurcu, B., Cavusoglu, H., & Benbasat, I. (2010). Information security policy compliance: an empirical study of rationality-based beliefs and information security awareness. MIS Quarterly, 34(3), 523-548.
Burmeister, K., & Schade, C. (2007). Are entrepreneurs' decisions more biased? An experimental investigation of the susceptibility to status quo bias. Journal of Business Venturing, 22(3), 340-362.
Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach. Decision Sciences, 32(4), 699-719.
Chen, P.-Y., & Hitt, L. M. (2002). Measuring switching costs and the determinants of customer retention in Internet-enabled businesses: A study of the online brokerage industry. Information Systems Research, 13(3), 255-274.
Ciccone, A. (2004). Resistance to reform: Status quo bias in the presence of individual-specific uncertainty: Comment. The American Economic Review, 94(3), 785-795.
Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New end-User Information Systems: Theory and Results (Doctoral dissertation, Massachusetts Institute of Technology).
Dovidio, J. F., Piliavin, J. A., Gaertner, S., Schroeder, D. A. & Clark III, R. D.(1991). The arousal: Cost-reward model and the process of intervention: A review of the evidence. Prosocial behavior. Review of Personality and Social Psychology, 12, 86-118.
Felson, M., & Clarke, R. V. (1998). Opportunity makes the thief. Police Research Series Paper, 98.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention,and behavior: An introduction to theory and research.Reading, Mass. Addison-Wesley.
Fishbein, M., & Ajzen, I. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philosophy and Rhetoric, 10(2), 130-132.
Gefen, D. (2003). TAM or just plain habit: A look at experienced online shoppers. Journal of Organizational and End User Computing (JOEUC), 15(3), 1-13.
Gill, K., Yang, S.-H., Yao, F., & Lu, X. (2009). A zigbee-based home automation system. IEEE Transactions on Consumer Electronics, 55(2), 422-430.
Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6), 92-101.
Greenfield, H. I. (2005). Consumer inertia. American Journal of Economics and Sociology, 64(4), 1085-1089.
Gulati, R. (1995). Social structure and alliance formation patterns: A longitudinal analysis. Administrative Science Quarterly, 40, 619-652.
Hair, J. F. (2010). Black, WC, Babin, BJ, & Anderson, RE (2010). Multivariate Data Analysis, 7.
Han, W., Ada, S., Sharman, R., & Rao, H. R. (2015). Campus emergency notification systems: an examination of factors affecting compliance with alerts. MIS Quarterly, 39(4), 909-929.
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420.
Herath, T., & Rao, H. R. (2009). Encouraging information security behaviors in organizations: Role of penalties, pressures and perceived effectiveness. Decision Support Systems, 47(2), 154-165.
Hsieh, P.-J. (2015). Healthcare professionals’ use of health clouds: Integrating technology acceptance and status quo bias perspectives. International Journal of Medical Informatics, 84(7), 512-523.
Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38(3), 369-381.
Hsu, M. H., Yen, C. H., Chiu, C. M., & Chang, C. M. (2006). A longitudinal investigation of continued online shopping behavior: An extension of the theory of planned behavior. International Journal of Human-Computer Studies, 64(9), 889-904.
Inman, J. J., & Zeelenberg, M. (2002). Regret in repeat purchase versus switching decisions: The attenuating role of decision justifiability. Journal of Consumer Research, 29(1), 116-128.
Javorek, F. (1979). When rape is not inevitable: Discriminating between completed and attempted rape cases for nonsleeping targets. Research Bulletin, 75-82.
Johnston, A. C., & Warkentin, M. (2010). Fear appeals and information security behaviors: an empirical study. MIS Quarterly, 34(3), 549-566.
Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2002). Why customers stay: measuring the underlying dimensions of services switching costs and managing their differential strategic outcomes. Journal of Business Research, 55(6), 441-450.
Kavcic, V., Krar, F. J., & Doty, R. W. (2000). Temporal cost of switching between kinds of visual stimuli in a memory task. Cognitive Brain Research, 9(2), 199-203.
Kim, H. W. (2011). The effects of switching costs on user resistance to enterprise systems implementation. IEEE Transactions on Engineering Management, 58(3), 471-482.
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: a status quo bias perspective. MIS Quarterly, 33(3), 567-582.
Kline, R. B. (1998). Principles and Practice of Structural Equation Modeling. New York: Guilford Press.
Kwon, N., & Onwuegbuzie, A. J. (2005). Modeling the factors affecting individuals' use of community networks: A theoretical explanation of community‐based information and communication technology use. Journal of the American Society for Information Science and Technology, 56(14), 1525-1543.
Lee, R., & Neale, L. (2012). Interactions and consequences of inertia and switching costs. Journal of Services Marketing, 26(5), 365-374.
Lee, Y., Kozar, K. A., & Larsen, K. R. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(1), 50.
Liao, S. H. (2002). Problem solving and knowledge inertia. Expert Systems with Applications, 22(1), 21-31.
Lim, K. H., Sia, C. L., Lee, M. K., & Benbasat, I. (2006). Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266.
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705-737.
Limayem, M., Hirt, S. G., & Chin, W. W. (2001). Intention does not always matter: the contingent role of habit on IT usage behavior. ECIS 2001 Proceedings, 56.
Lin, C. Y. (2013). The factors influencing satisfaction and churn intention of using smartphones. 2013 Conference on Internationalization of Service Industry, Tainan Shi.
MacKinnon, D. P. 2008. Introduction to Statistical Mediation Analysis, New York: Taylor & Francis Group.
Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance model: the influence of perceived user resources. ACM SigMIS Database, 32(3), 86-112.
McMullan, R. (2005). A multiple-item scale for measuring customer loyalty development. Journal of Services Marketing, 19(7), 470-481.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Painter, K. (1996). The influence of street lighting improvements on crime, fear and pedestrian street use, after dark. Landscape and Urban Planning, 35(2), 193-201.
Parker, M., Moleshe, V., De la Harpe, R., & Wills, G. (2006). An evaluation of Information quality frameworks for the World Wide Web. 8th Annual Conference on WWW Applications, Bloemfontein, 6-8 September.
Polites, G. L., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21-42.
Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The Journal of Psychology, 91(1), 93-114.
Roy, R., Chintagunta, P. K., & Haldar, S. (1996). A framework for investigating habits,“The Hand of the Past,” and heterogeneity in dynamic brand choice. Marketing Science, 15(3), 280-299.
Rumelt, R. P. (1995). Inertia and transformation. Resource-Based and Evolutionary Theories of the Firm: Towards a Synthesis (pp. 101-132): Springer.
Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7-59.
Shih, H.-P. (2004). Extended technology acceptance model of Internet utilization behavior. Information & Management, 41(6), 719-729.
Singh, P., Singh, P., Park, I., Lee, J., & Rao, H. R. (2009). Information sharing: a study of information attributes and their relative significance during catastrophic events. Cyber-Security and Global Information Assurance: Threat Analysis and Response Solutions, IGI Publishers.
Soliman, M., Abiodun, T., Hamouda, T., Zhou, J., & Lung, C.-H. (2013). Smart Home: Integrating Internet of Things with Web Services and Cloud Computing. 2013 IEEE 5th International Conference on, 2, 317–320.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & Management, 40(6), 541-549.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Verplanken, B., & Orbell, S. (2003). Reflections on Past Behavior: A Self‐Report Index of Habit Strength1. Journal of Applied Social Psychology, 33(6), 1313-1330.
Witte, K. (1992). Putting the fear back into fear appeals: The extended parallel process model. Communications Monographs, 59(4), 329-349.
Witte, K. (1994). Fear control and danger control: A test of the extended parallel process model (EPPM). Communications Monographs, 61(2), 113-134.
Witte, K. (1996). Predicting risk behaviors: Development and validation of a diagnostic scale. Journal of Health Communication, 1(4), 317-342.
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. The Journal of Marketing, 52(3), 2-22.

三、網路部分
Consumer Electronics Association & Parks Associates (2014). Smart Home Ecosystem: IoT and Consumers.Retrieved December 10, 2016, from http://www.parksassociates.com/bento/shop/whitepapers/files/Parks%20Assoc%20CEA%20Smart%20Home%20Ecosystem%20WP.pdf
內政部消防署 (民105)。全國火災次數、起火原因及火災損失統計表。民國105年12月17日,取自: http://www.nfa.gov.tw/main/list.aspx?ID=&MenuID=342
內政部警政署 (民105)。警政統計通報。民國105年12月17日,取自: https://www.npa.gov.tw/NPAGip/wSite/public/Attachment/f1457322006395.pdf
台灣網路資訊中心 (民105)。台灣網際網路使用調查。民國105年12月10日,取自: http://www.twnic.net.tw/total/total_01.htm
遠傳電信 (民105)。遠傳全能行動管家首份智慧家庭問卷調查大公開。民國105年12月10日,取自: https://www.fetnet.net/cs/Satellite/Corporate/coNewsReleases?aid=3000009850544
劉耕睿 (民104)。拓墣:智慧家庭帶動需求,2019年視訊監控市場規模將超過400億美元。民國105年12月10日,取自:http://press.trendforce.com.tw/press/20150818-2772.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊