|
1.Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3. 2.Thomas, S.J. and R. MacLennan, Slaked lime and betel nut cancer in Papua New Guinea. Lancet, 1992. 340(8819): p. 577-8. 3.Kalavrezos, N. and C. Scully, Mouth Cancer for Clinicians Part 3: Risk Factors (Traditional: Tobacco). Dent Update, 2015. 42(5): p. 476-8, 480-3. 4.Blot, W.J., et al., Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res, 1988. 48(11): p. 3282-7. 5.Lu, C.T., et al., A case-control study of oral cancer in Changhua County, Taiwan. J Oral Pathol Med, 1996. 25(5): p. 245-8. 6.Brandwein-Gensler, M. and R.V. Smith, Prognostic indicators in head and neck oncology including the new 7th edition of the AJCC staging system. Head Neck Pathol, 2010. 4(1): p. 53-61. 7.Lee, Y.J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther, 2011. 130(2): p. 157-76. 8.Ho, K.Y., et al., Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res, 2001. 15(2): p. 139-41. 9.Chunlian, W., et al., Magnolol inhibits tumor necrosis factor-alpha-induced ICAM-1 expression via suppressing NF-kappaB and MAPK signaling pathways in human lung epithelial cells. Inflammation, 2014. 37(6): p. 1957-67. 10.Shigemura, K., et al., Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer, 2007. 109(7): p. 1279-89. 11.Chen, C.R., et al., Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, exerts antiepileptic effects via the GABA/benzodiazepine receptor complex in mice. Br J Pharmacol, 2011. 164(5): p. 1534-46. 12.Zuo, G.Y., et al., In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC Complement Altern Med, 2015. 15: p. 425. 13.Chen, Y.H., et al., Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res, 2009. 32(2): p. 221-8. 14.Youn, U.J., et al., Cytotoxic lignans from the stem bark of Magnolia officinalis. J Nat Prod, 2007. 70(10): p. 1687-9. 15.Wei, W., et al., Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation, 2015. 38(1): p. 16-26. 16.Chao, L.K., et al., Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem, 2010. 58(6): p. 3472-8. 17.Liu, Y., et al., The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep, 2013. 3: p. 3098. 18.Zhou, Y., et al., Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway. Pharmazie, 2013. 68(9): p. 755-62. 19.Park, J.B., et al., Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull, 2012. 35(9): p. 1614-20. 20.Kang, Y.J., et al., Wnt/beta-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol, 2012. 82(2): p. 168-77. 21.Tsai, J.R., et al., Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch Pharm Res, 2014. 37(4): p. 548-57. 22.Seo, J.U., et al., Anticancer potential of magnolol for lung cancer treatment. Arch Pharm Res, 2011. 34(4): p. 625-33. 23.Li, H.B., et al., Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch Pharm Res, 2007. 30(12): p. 1566-74. 24.Chilampalli, C., et al., Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer, 2011. 11: p. 456. 25.Hwang, E.S. and K.K. Park, Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem, 2010. 74(5): p. 961-7. 26.McKeown, B.T. and R.A. Hurta, Magnolol affects expression of IGF-1 and associated binding proteins in human prostate cancer cells in vitro. Anticancer Res, 2014. 34(11): p. 6333-8. 27.McKeown, B.T., et al., Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins. Nutr Cancer, 2014. 66(7): p. 1154-64. 28.Cheng, Y.C., et al., Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget, 2016. 29.Kumar, S., et al., Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis, 2013. 4: p. e889. 30.Ikeda, K., Y. Sakai, and H. Nagase, Inhibitory effect of magnolol on tumour metastasis in mice. Phytother Res, 2003. 17(8): p. 933-7. 31.Lin, C.F., et al., Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharm, 2013. 445(1-2): p. 153-62. 32.Wang, T.H., et al., 2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells. Cell Death Dis, 2017. 8(3): p. e2638. 33.Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504. 34.Kung, J.T., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-69. 35.Jiang, P., et al., NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016. 7(28): p. 43337-43351. 36.Lau, E., Non-coding RNA: Zooming in on lncRNA functions. Nat Rev Genet, 2014. 15(9): p. 574-5. 37.Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14. 38.Guttman, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009. 458(7235): p. 223-7. 39.Huarte, M., The emerging role of lncRNAs in cancer. Nat Med, 2015. 21(11): p. 1253-61. 40.Jiang, C., et al., Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer, 2016. 15(1): p. 62. 41.Song, S., et al., RCCRT1 is correlated with prognosis and promotes cell migration and invasion in renal cell carcinoma. Urology, 2014. 84(3): p. 730 e1-7. 42.Guttman, M., et al., lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011. 477(7364): p. 295-300. 43.de Lena, P.G., et al., Clusterization in head and neck squamous carcinomas based on lncRNA expression: molecular and clinical correlates. Clin Epigenetics, 2017. 9: p. 36. 44.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 45.Tiwari, N., et al., EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol, 2012. 22(3): p. 194-207. 46.Linher-Melville, K. and G. Singh, The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol, 2017. 47.Chen, S.C., et al., Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol, 2006. 148(2): p. 226-32. 48.Nathanson, A., et al., Evaluation of some prognostic factors in small squamous cell carcinoma of the mobile tongue: a multicenter study in Sweden. Head Neck, 1989. 11(5): p. 387-92. 49.Vichai, V. and K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc, 2006. 1(3): p. 1112-6. 50.Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 2010. 70(2): p. 440-6. 51.Im, A.R., et al., Magnolol reduces UVB-induced photodamage by regulating matrix metalloproteinase activity. Environ Toxicol Pharmacol, 2015. 39(1): p. 417-23.
|