(44.192.112.123) 您好!臺灣時間:2021/03/09 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉怡雯
研究生(外文):LIU, YI-WEN
論文名稱:探討2-O-methylmagnolol對口腔鱗狀上皮細胞癌之抗癌成效與機制
論文名稱(外文):Characterization of anti-cancer effect of 2-O-methylmagnolol in oral squamous cell carcinoma
指導教授:陳琦媛陳琦媛引用關係
指導教授(外文):CHEN, CHI-YUAN
口試委員:王子堅王東弘陳金銓
口試委員(外文):WANG TZU-CHIEN VANWANG, TONG-HONGCHEN, CHIN-CHUAN
口試日期:2017-06-14
學位類別:碩士
校院名稱:長庚科技大學
系所名稱:健康產業科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:口腔鱗狀上皮細胞癌厚朴酚的衍生物細胞凋亡細胞激素 IL-6
外文關鍵詞:oral squamous cell carcinomamagnolol derivativesapoptosisIL-6
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
目錄 iii
圖目錄 viii
表目錄 xi
附圖目錄 xii
附表目錄 xiii
第一章 緒論 - 1 -
第一節 頭頸癌(Head and neck cancer) - 1 -
第二節 口腔癌(Oral cancer) - 1 -
第三節 口腔癌分期 - 2 -
第四節 口腔癌目前治療方式 - 3 -
第五節 口腔癌的預後 - 4 -
第六節 厚朴酚(Magnolol) - 4 -
第七節 2-O-methylmagnolol (MM1) - 5 -
第八節 長鏈非編碼核糖核酸 (Long non-coding RNA, lncRNA) - 6 -
第九節 上皮間質轉化 (Epithelial-mesenchymal transition, EMT) - 7 -
第十節 信號轉導及轉錄激活蛋白3 (Signal transducer and activator of transcription 3, STAT3) - 7 -
第二章 研究目的 - 9 -
第三章 實驗設計與方法 - 10 -
第一節 細胞株及細胞培養 - 10 -
壹、細胞株(Cell lines) - 10 -
貳、細胞株培養(Cell culture) - 10 -
參、細胞繼代培養(Subculture) - 11 -
肆、細胞數測定 (Cell counting) - 11 -
第二節 試劑(Reagents) - 12 -
壹、藥物及試劑(Drugs and reagents) - 12 -
貳、抗體(Antibodies) - 13 -
參、質體(Plasmid) - 13 -
第三節 實驗方法(Methods) - 13 -
壹、Sulforhodamine B(SRB)colorimetric assay - 13 -
貳、細胞存活測試(Trypan blue staining) - 14 -
參、細胞群落生成試驗(Clonogenic survival assay) - 15 -
肆、細胞遷移試驗(Cell migration assay) - 15 -
伍、細胞侵襲試驗(Cell invasion assay) - 16 -
陸、西方墨點法(Western blot) - 16 -
一、細胞中蛋白質的萃取(Protein extraction) - 16 -
二、蛋白質定量(Protein quantification) - 17 -
三、膠凝體電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE) - 17 -
四、轉漬(Transfer) - 18 -
五、免疫墨點(Immuno blot) - 18 -
柒、核糖核酸萃取 (RNA extraction) - 19 -
捌、反轉錄聚合酶鏈鎖反應(Reverse transcription-PCR, RT-PCR) - 20 -
一、反轉錄反應(Reverse Transcription) - 20 -
二、聚合酶酵素鏈鎖反應(Polymerase Chain Reaction) - 20 -
三、即時定量反轉錄聚合連鎖反應(Real-time quantitative reverse transcription PCR) - 21 -
玖、細胞轉染(Transfection) - 21 -
拾、建立帶有螢光素酶(Luciferase)的細胞株 - 22 -
一、選殖細胞(Selection of stable cell lines) - 22 -
二、螢光素酶試驗(Luciferase assay) - 22 -
拾壹、體內原位移植瘤模型(In vivo orthotopic tumor implantation model) - 22 -
拾貳、免疫組織化學染色(Immunohistochemistry) - 23 -
拾參、組織化學染色–蘇木紫-伊紅染色(Hematoxylin and eosin stain) - 24 -
拾肆、Kaplan-Meier(K-M) survival curve - 24 -
拾伍、藥物聯合作用指數(Drug combination index; CI) - 25 -
拾陸、酵素免疫分析法(Enzyme-linked immunosorbent assay; ELISA assay) - 25 -
拾柒、統計分析(Statistical analysis) - 26 -
第四章 結果 - 27 -
第一節 Magnolol 及 MM1 對於細胞的毒殺作用 - 27 -
第二節 Magnolol 及 MM1 對於細胞的存活率影響 - 27 -
第三節 Magnolol 及 MM1 對於抑制細胞群落形成的效果 - 28 -
第四節 Magnolol 及 MM1 對於細胞遷移的抑制效果 - 29 -
第五節 Magnolol 及 MM1 對於細胞侵襲的抑制效果 - 29 -
第六節 Magnolol 及 MM1 對於口腔鱗狀癌細胞上皮細胞間質轉化(epithelial-mesenchymal transition,EMT)的影響 - 30 -
第七節 Magnolol 及 MM1 使口腔鱗狀癌細胞走向凋亡 - 31 -
第八節 確認 SAS-Luc 細胞中螢光素酶的表現量 - 31 -
第九節 MM1 抑制口腔鱗狀癌細胞 SAS 之活體內腫瘤的生成 - 32 -
第十節 Magnolol 及 MM1 抑制口腔鱗狀癌細胞 STAT3 及 AKT磷酸化蛋白表現 - 33 -
第十一節 Magnolol 及 MM1 對 IL-6 表現的影響 - 34 -
第十二節 MM1 合併臨床化療用藥(cisplatin)觀察對於口腔鱗狀癌細胞 SAS 表現 - 35 -
第十三節 Magnolol 及 MM1 對 long non-coding RNA NEAT1表現的影響 - 35 -
第十四節 MM1 促使小鼠口腔鱗狀細胞癌凋亡 - 36 -
第五章 討論 - 37 -
第六章 圖表 - 44 -
第六章 文獻參考 - 66 -
第七章 附圖表 - 73 -

1.Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3.
2.Thomas, S.J. and R. MacLennan, Slaked lime and betel nut cancer in Papua New Guinea. Lancet, 1992. 340(8819): p. 577-8.
3.Kalavrezos, N. and C. Scully, Mouth Cancer for Clinicians Part 3: Risk Factors (Traditional: Tobacco). Dent Update, 2015. 42(5): p. 476-8, 480-3.
4.Blot, W.J., et al., Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res, 1988. 48(11): p. 3282-7.
5.Lu, C.T., et al., A case-control study of oral cancer in Changhua County, Taiwan. J Oral Pathol Med, 1996. 25(5): p. 245-8.
6.Brandwein-Gensler, M. and R.V. Smith, Prognostic indicators in head and neck oncology including the new 7th edition of the AJCC staging system. Head Neck Pathol, 2010. 4(1): p. 53-61.
7.Lee, Y.J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther, 2011. 130(2): p. 157-76.
8.Ho, K.Y., et al., Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytother Res, 2001. 15(2): p. 139-41.
9.Chunlian, W., et al., Magnolol inhibits tumor necrosis factor-alpha-induced ICAM-1 expression via suppressing NF-kappaB and MAPK signaling pathways in human lung epithelial cells. Inflammation, 2014. 37(6): p. 1957-67.
10.Shigemura, K., et al., Honokiol, a natural plant product, inhibits the bone metastatic growth of human prostate cancer cells. Cancer, 2007. 109(7): p. 1279-89.
11.Chen, C.R., et al., Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, exerts antiepileptic effects via the GABA/benzodiazepine receptor complex in mice. Br J Pharmacol, 2011. 164(5): p. 1534-46.
12.Zuo, G.Y., et al., In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC Complement Altern Med, 2015. 15: p. 425.
13.Chen, Y.H., et al., Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res, 2009. 32(2): p. 221-8.
14.Youn, U.J., et al., Cytotoxic lignans from the stem bark of Magnolia officinalis. J Nat Prod, 2007. 70(10): p. 1687-9.
15.Wei, W., et al., Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation, 2015. 38(1): p. 16-26.
16.Chao, L.K., et al., Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-kappaB pathway to reduce LPS-induced TNFalpha and NO expression. J Agric Food Chem, 2010. 58(6): p. 3472-8.
17.Liu, Y., et al., The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep, 2013. 3: p. 3098.
18.Zhou, Y., et al., Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway. Pharmazie, 2013. 68(9): p. 755-62.
19.Park, J.B., et al., Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol Pharm Bull, 2012. 35(9): p. 1614-20.
20.Kang, Y.J., et al., Wnt/beta-catenin signaling mediates the antitumor activity of magnolol in colorectal cancer cells. Mol Pharmacol, 2012. 82(2): p. 168-77.
21.Tsai, J.R., et al., Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch Pharm Res, 2014. 37(4): p. 548-57.
22.Seo, J.U., et al., Anticancer potential of magnolol for lung cancer treatment. Arch Pharm Res, 2011. 34(4): p. 625-33.
23.Li, H.B., et al., Magnolol-induced H460 cells death via autophagy but not apoptosis. Arch Pharm Res, 2007. 30(12): p. 1566-74.
24.Chilampalli, C., et al., Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer, 2011. 11: p. 456.
25.Hwang, E.S. and K.K. Park, Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci Biotechnol Biochem, 2010. 74(5): p. 961-7.
26.McKeown, B.T. and R.A. Hurta, Magnolol affects expression of IGF-1 and associated binding proteins in human prostate cancer cells in vitro. Anticancer Res, 2014. 34(11): p. 6333-8.
27.McKeown, B.T., et al., Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins. Nutr Cancer, 2014. 66(7): p. 1154-64.
28.Cheng, Y.C., et al., Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas. Oncotarget, 2016.
29.Kumar, S., et al., Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis, 2013. 4: p. e889.
30.Ikeda, K., Y. Sakai, and H. Nagase, Inhibitory effect of magnolol on tumour metastasis in mice. Phytother Res, 2003. 17(8): p. 933-7.
31.Lin, C.F., et al., Maximizing dermal targeting and minimizing transdermal penetration by magnolol/honokiol methoxylation. Int J Pharm, 2013. 445(1-2): p. 153-62.
32.Wang, T.H., et al., 2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells. Cell Death Dis, 2017. 8(3): p. e2638.
33.Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504.
34.Kung, J.T., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-69.
35.Jiang, P., et al., NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016. 7(28): p. 43337-43351.
36.Lau, E., Non-coding RNA: Zooming in on lncRNA functions. Nat Rev Genet, 2014. 15(9): p. 574-5.
37.Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14.
38.Guttman, M., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009. 458(7235): p. 223-7.
39.Huarte, M., The emerging role of lncRNAs in cancer. Nat Med, 2015. 21(11): p. 1253-61.
40.Jiang, C., et al., Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer, 2016. 15(1): p. 62.
41.Song, S., et al., RCCRT1 is correlated with prognosis and promotes cell migration and invasion in renal cell carcinoma. Urology, 2014. 84(3): p. 730 e1-7.
42.Guttman, M., et al., lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011. 477(7364): p. 295-300.
43.de Lena, P.G., et al., Clusterization in head and neck squamous carcinomas based on lncRNA expression: molecular and clinical correlates. Clin Epigenetics, 2017. 9: p. 36.
44.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
45.Tiwari, N., et al., EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol, 2012. 22(3): p. 194-207.
46.Linher-Melville, K. and G. Singh, The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol, 2017.
47.Chen, S.C., et al., Herbal remedy magnolol suppresses IL-6-induced STAT3 activation and gene expression in endothelial cells. Br J Pharmacol, 2006. 148(2): p. 226-32.
48.Nathanson, A., et al., Evaluation of some prognostic factors in small squamous cell carcinoma of the mobile tongue: a multicenter study in Sweden. Head Neck, 1989. 11(5): p. 387-92.
49.Vichai, V. and K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc, 2006. 1(3): p. 1112-6.
50.Chou, T.C., Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 2010. 70(2): p. 440-6.
51.Im, A.R., et al., Magnolol reduces UVB-induced photodamage by regulating matrix metalloproteinase activity. Environ Toxicol Pharmacol, 2015. 39(1): p. 417-23.

電子全文 電子全文(網際網路公開日期:20220701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔