跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江臨鈺
研究生(外文):Lin Yu Chiang
論文名稱:電漿輔助塗佈二氧化鈦及石墨烯於高分子膜表面以促進UV光降解效率
論文名稱(外文):Plasma-Assisted Coating of Titania and Graphene Oxide onto Polymer Membrane Surface for Enhanced UV Photodegradation
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):R. S. Juang
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:172
中文關鍵詞:大氣電漿電漿輔助塗布聚偏二氟乙烯薄膜複合性薄膜甲基藍
外文關鍵詞:atmospheric pressure plasmaplasma-assisted coatingpoly(vinylidene fluoride)membranecomposite membranephenolmethylene blue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要係取兩種程序特點,以達到相乘(synergy)之效果,將二氧化鈦(TiO2)與氧化石墨烯(graphene oxide, GO)利用電漿輔助塗佈方式,將材料固定於過濾膜上製成複合膜,減少二氧化鈦與氧化石墨烯回收的困擾,並結合UV/光催化方式處理含酚或染料有機廢水產生光降解作用,以提高光催化之效率。實驗使用商用型Millipore聚偏二氟乙烯(PVDF)疏水膜(平均孔徑0.45μm、平均厚度125μm),主要因聚偏二氟乙烯耐酸性佳及薄膜支撐力佳。利用不同重量百分比進行複合膜製備,二氧化鈦與氧化石墨烯之間的分散性會影響其光降解效率及電子傳導速率,利用X光繞射儀、X光電子能譜儀、拉曼光譜儀、傅立葉紅外線光譜儀、場發射掃描式電子顯微鏡進行材料分析。並將PVDF-g-PAA-GO/TiO2複合膜,使用功率100-W UV降解酚及甲基藍溶液,發現降解效率為 75%>50%>25%;即氧化石墨烯含量對於二氧化鈦在降解效率提升有一定幫助,並利用HPLC進行分析有機物濃度變化,以探討其光降解速率。
In this study, Two nanoscale materials, Titanium dioxide(TiO2) and graphene oxide(GO), were used to achieve the synergy effect because of their characterizations. Commercial Millipore polyvinylidene fluoride (PVDF) hydrophobic membrane was used due to its excellent acid resistance and support the nanomaterials. TiO2 and GO were immobilized on a commercial Millipore polyvinylidene fluoride(PVDF) hydrophobic membrane by the method of Plasma-Assisted Coating. It showed that the UV/photocatalytic treatment with the PVDF-g-PAA-TiO2/GO membrane enhanced the photocatalytic efficiency of the photocatalyst. A vary of the composite of TiO2 and GO immobilized on PVDF membrane had been used for samples. The characterization of PVDF-g-PAA-TiO2/GO membrane was analyzed by X-ray diffraction(XRD), X-ray photoelectron Spectrometer (XPS), Raman spectroscopy, Fourier infrared spectrometer (FTIR) and field emission scanning electron microscope(FE-SEM). The time constant of organic compound in a variety of concentrations analyzed by high performance liquid chromatography(HPLC) following a direct proportionality with the photo-degradation rate constant in different samples. The treatment with PVDF-g-PAA-TiO2/GO membrane marked a promising result in the degradation of phenol or dyestuff organic wastewater at 100-W UV followed by phenol and methylene blue solution. The results reveal the degradation rate: 75%> 50%> 25% in different samples.
指導教授推薦書
口試委員會審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
符號說明 xvii
第一章 緒論 1
1.1 研究緣起 1
1.2 研究動機與目的 1
1.3 研究流程 4
第二章 文獻回顧 5
2.1 廢水處理基礎理論 5
2.2 聚偏二氟乙烯薄膜之特性 7
2.3 二氧化鈦 7
2.3.1 二氧化鈦光觸媒光催化原理 12
2.3.2 二氧化鈦反應機制 13
2.3.3 光催化動力學 15
2.4 石墨烯 18
2.4.1 石墨烯性質介紹 18
2.4.2 石墨烯的製備 19
2.5 石墨烯/二氧化鈦複合物 21
2.5.1 石墨烯/二氧化鈦複合物性質介紹 21
2.5.2 石墨烯/二氧化鈦複合物反應機制 22
2.5.3 石墨烯/二氧化鈦複合物的製備 23
2.6 酚 27
2.6.1 酚性質介紹 27
2.6.2 酚的危害性 28
2.6.3 光觸媒對酚降解 29
2.7 甲基藍 30
2.7.1 甲基藍性質介紹 30
2.7.2 光觸媒對甲基藍降解 31
2.8 電漿 32
2.8.1 大氣電漿 32
2.8.2 表面改質與塗佈 34
2.8.3 丙烯酸性質介紹 36
2.8.4 斷鏈轉移 38
第三章 實驗部分 40
3.1實驗藥品與儀器 40
3.1.1 實驗藥品 40
3.1.2 實驗儀器 41
3.1.3 氣旋式大氣電漿系統 43
3.1.4 光降解反應系統 46
3.2 複合膜製備 51
3.2.1 溶膠凝膠法製備二氧化鈦 51
3.2.2 製備氧化石墨烯 51
3.2.3 製備丙烯酸溶液 53
3.2.4 電漿輔助塗佈 53
3.3 分析方法 54
3.3.1 表面化學元素分析 54
3.3.2 表面結構分析 55
3.3.3 吸收波長分析 56
3.3.4 酚的濃度測定 56
3.3.5 甲基藍的濃度測定 58
3.3.6 紫外光直接降解實驗 58
3.3.7 不同觸媒含量複合膜之降解影響 60
第四章 實驗結果與討論 62
4.1 二氧化鈦/氧化石墨烯複合膜物性分析 62
4.1.1 X-ray繞射分析 62
4.1.2 表面結構分析 71
4.1.3 表面化學元素組成分析 83
4.2 對照組實驗與基本分析 98
4.2.1 降解水溶液性質分析 98
4.2.2 直接光降解實驗 99
4.3 複合膜對紫外光系統降解 101
4.3.1 不同觸媒含量複合膜降解 101
4.3.2 溶膠凝膠法製備複合膜酚降解 125
第五章 結論 132
參考文獻 133


圖目錄
圖2.1 二氧化鈦之晶體結構 9
圖2.2 二氧化鈦之分子鍵結方式 10
圖2.3 二氧化鈦電子受激躍遷示意圖 13
圖2.4 光催化反應內部的反應意示圖 13
圖2.5 二氧化鈦光催化反應機制 15
圖2.6 石墨可組成不同型態之材料 18
圖2.7 化學剝離法製備氧化石墨烯 21
圖2.8 石墨烯/二氧化鈦光降解機制 22
圖2.9 二氧化鈦奈米晶對氧化石墨烯片材合成機制 24
圖2.10 陰離子活性劑調節石墨烯/二氧化鈦混合奈米結構 25
圖2.11 酚光降解路徑 29
圖2.12 甲基藍降解路徑 31
圖2.13 薄膜固定化流程圖 36
圖2.14 斷鏈轉移示意圖 38
圖2.15 不同二氧化鈦表面官能基配位 39
圖3.1氣旋式大氣電漿設備示意圖 44
圖3.2氣旋式大氣電漿實體照 44
圖3.3射頻電漿電源供應器 45
圖3.4 氣體流量控制器材 45
圖3.5 塗佈反應器構造及實體圖 46
圖3.6 SEN高壓汞燈光譜放射能量分布 48
圖3.7 SEN高壓汞燈示意圖 48
圖3.8降解實驗反應裝置圖(1) 49
圖3.9降解實驗反應裝置構造圖(2) 50
圖3.10光催化降解實驗裝置圖 50
圖4.1 JCPDS資料庫 64
圖4.2 商業型Degussa P25二氧化鈦XRD分析圖譜 65
圖4.3 溶膠凝膠製備二氧化鈦XRD分析圖譜 65
圖4.4 石墨XRD分析圖譜 68
圖4.5 氧化石墨烯XRD分析圖譜 68
圖4.6 經電漿處理後之複合材XRD分析圖譜 69
圖4.7 未處理PVDF薄膜XRD分析圖譜 69
圖4.8 PVDF-g-PAA-GO複合膜之XRD分析圖譜 70
圖4.9 PVDF-g-PAA-P25 TiO2複合膜之XRD分析圖譜 70
圖4.10 溶膠凝膠法製備二氧化鈦SEM圖 71
圖4.11 商業型Degussa P25二氧化鈦SEM圖 72
圖4.12 PVDF原膜SEM俯視圖 73
圖4.13 PVDF原膜SEM剖面圖 73
圖4.14 PVDF-g-PAA SEM俯視圖 74
圖4.15 PVDF-g-PAA-GO SEM俯視圖 74
圖4.16 PVDF-g-PAA-GO SEM剖面圖 75
圖4.17 PVDF-g-PAA-P25 SEM俯視圖 75
圖4.18 PVDF-g-PAA-P25 SEM剖面圖 76
圖4.19 PVDF-g-PAA-P25/GO SEM俯視圖 76
圖4.20 PVDF-g-PAA-P25/GO SEM剖面圖 77
圖4.21 PVDF-g-PAA-P25 SEM圖 78
圖4.22 PVDF-g-PAA-P25/GO SEM 圖 79
圖4.23 天然石墨TEM 圖 80
圖4.24 氧化石墨烯TEM 圖 80
圖4.25 經電漿處理後氧化石墨烯TEM圖 81
圖4.26 經電漿處理後P25/GO TEM圖 82
圖4.27 經電漿處理後之複合材Raman光譜圖 83
圖4.28丙烯酸於PVDF薄膜與接觸角圖 84
圖4.29 丙烯酸濃度與接觸角關係圖 85
圖4.30大氣電漿輔助塗佈複合膜FTIR-ATR圖 86
圖4.31氧化石墨烯XPS全譜圖 88
圖4.32 複合材XPS碳元素分峰圖 89
圖4.33 PVDF-g-PAA XPS碳元素分峰圖 91
圖4.34 PVDF-g-PAA-GO XPS碳元素分峰圖 92
圖4.35 PVDF-g-PAA-TiO2 XPS碳元素分峰圖 94
圖4.36 PVDF-g-PAA-TiO2/GO XPS碳元素分峰圖 96
圖4.37 XPS鈦元素分峰圖 97
圖4.38 酚溶液UV-Vis吸收光譜圖 98
圖4.39 甲基藍溶液UV-Vis吸收光譜圖 99
圖4.40 酚直接光降解實驗 100
圖4.41甲基藍直接光降解實驗 100
圖4.42 P25複合膜降解酚效率變化 102
圖4.43 P25複合膜降解酚一階反應 103
圖4.44定量比例P25/GO複合膜降解酚效率變化 106
圖4.45定量比例P25/GO複合膜降解酚一階反應 109
圖4.46 不同比例P25/GO複合膜降解酚效率變化 112
圖4.47 不同比例P25/GO複合膜降解酚一階反應 115
圖4.48 P25複合膜效率降解甲基藍變化 117
圖4.49 P25複合膜降解甲基藍一階反應 119
圖4.50定量比例P25/GO複合膜降解甲基藍效率變化 121
圖4.51定量比例P25/GO複合膜降解甲基藍一階反應 124
圖4.52 溶膠凝膠法二氧化鈦複合膜重複利用效率變化 127
圖4.53 溶膠凝膠法二氧化鈦複合膜一階反應 130


表目錄
表2.1 銳鈦礦與金紅石晶型之物理特性比較 11
表2.2 石墨烯製備方法 20
表2.3 酚之物理化學性質 28
表2.4 甲基藍之物理化學性質 30
表2.5 丙烯酸之物理化學性質 37
表3.1燈源特性資料表 47
表3.2 HPLC最佳操作條件 57
表4.1各種樣品的臨界波長與能階 67
表4.2 拉曼光譜波峰值比較 82
表4.3丙烯酸於PVDF薄膜與接觸角關係 85
表4.4 複合材元素比例分析 90
表4.5 PVDF-g-PAA複合膜元素比例分析 91
表4.6 PVDF-g-PAA-GO複合膜元素比例分析 93
表4.7 PVDF-g-PAA-TiO2複合膜元素比例分析 94
表4.8 PVDF-g-PAA-GO/TiO2複合膜元素比例分析 96
表4.9 P25複合膜對酚之移除率 102
表4.10 P25複合膜降解速率表 104
表4.11 定量P25/GO複合膜對酚之移除率 107
表4.12 定量P25/GO複合膜降解速率表 110
表4.13 不同比例P25/GO複合膜對酚之移除率 113
表4.14 不同比例P25/GO複合膜降解速率表 116
表4.15 P25複合膜對甲基藍之移除率 118
表4.16 P25複合膜降解甲基藍速率表 119
表4.17 定量P25/GO複合膜對甲基藍之移除率 122
表4.18 定量P25/GO複合膜降解甲基藍速率表 125
表4.19 溶膠凝膠法二氧化鈦複合膜對酚之移除率 128
表4.20 溶膠凝膠法二氧化鈦複合膜降解速率表 131
Anpo M.; Shima T., Kodama S., Kubokawa Y., “Photocatalytic Hydrogenation of CH3CCH with H2O on small-particle TiO2:size Quantization Effects and Reaction Intermediates”, Journal of Physical Chemistry, 91, 4305-4310 (1987)
Abdullah, M., Low G. K. C., Matthews R. W., “Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide”, Journal of Physical Chemistry, 94 (17), 6820-6825 (1990)
Anderson, M.A., Yamazaki-Nishida, A., Cervera-March, S., “Photodegradation of trichloroethylene in the gas phase using TiO2 porpous ceramic membranes,” in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F. and Al- Ekabi, H., Eds., Elsevier, Amsterdam, 820,405-420 (1993)
Ammar, H., Hinda, L., Mohamed, K., Elimame, E., Chantal, G., & Jean-Marie, H. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental, 31, 145-157 (2001)
Anpo M., Takeuchi M., Dohshi S.; Eura T., “Preparation of Titanium-Silicon Binary Oxide Thin Film Photocatalysts by an Ionized Cluster Beam Deposition Method. Their Photocatalytic Activity and Photoinduced Super-Hydrophilicity,” Journal of Physical Chemistry B, 107, 14278-14282 (2003)
Akhavan, O., Abdolaha, M., Esfandiar, A., & Mohatashamifa, M. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. The Journal of Physical Chemistry C (2010)
Akashi, N., & Kuroda, S.-i. Protein immobilization onto poly (vinylidene fluoride) microporous membranes activated by the atmospheric pressure low temperature plasma. Polymer, 55(12), 2780-2791 (2014)
Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., & Ma, J. Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 55(1), 201-210 (2014)
Adamu, H., Dubey, P., & Anderson, J. A. Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chemical Engineering Journal, 284, 380-388 (2016)
Bahnemann, D., Bockelmann, D., Goslich, R., “Mechanistic studies of water detoxification in illuminated TiO2 suspensions,” Solar Energy Materials, 24, 564-583 (1991)
Bamwenda G .R., Tsubuta S., Nakamura T., Haruta M., “Photoassisted Hydrogen Production from a Water-Ethanol Solution: a Comparison of Activities of Au-TiO2 and Pt-TiO2 ,” Journal of Photochemistry and Photobiology A: Chemistry, 89, 177-189 (1995)
Bischoff B. L., Anderson M. A., “Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2),” Chemistry Material, 7, 1772-1778 (1995)
Bosch-Navarro, C., Coronado, E., Marti-Gastaldo, C., Sanchez-Royo, J. F., & Gomez, M. G. Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 4(13), 3977-3982 (2012).
Cot, F., Larbot, A., Nabias, G. and Cot, L., “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder’’, Journal of the European Ceramic Society, 18, 2175-2181 (1998)
Chae S. Y., Park M. K., Lee S. K., Kim T. Y., Kim S. K., Lee W. I., “Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films,” Chemistry of Material, 15, 3326-3331 (2003)
Cho, S. P., Hong, S. C., Hong, S. I., “Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter,” Chemical Engineering Journal, 98, 245-253 (2004)
Chen, C., Cai, W., Long, M., Zhou, B., Wu, Y., Wu, D., & Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano, 4(11), 6425-6432 (2010).
Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., & Zhang, J. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science, 7(5), 1564 (2014).
Cruz, N. K. O., Semblante, G. U., Senoro, D. B., You, S.-J., & Lu, S.-C. Dye degradation and antifouling properties of polyvinylidene fluoride/titanium oxide membrane prepared by sol–gel method. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 192-201 (2014).
Dhananjeyan, M.R., Annapoorani, R., Renganathan, R., “A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil,” Journal of Photochemistry and Photobiology A: Chemistry, 109, 147-153 (1997)
Evans L. R., Prairie M. R., Stange B. M., Martinez S. L., “An Investigation of Titanium Dioxide Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals.” Environmental Science & Technology, 27, 1776-1782 (1993)
Fujishima, A., Honda, A., “ElectroChemical Photolysis of Water at a Semiconductor Electrode,” Nature, 37-238 (1972)
Fujihire, M., Satoh, Y., Osa, T., “Heterogeneous photocatalytic reaction on semiconductor materials. II effect of pH and Cu2+ Ions on the photo-Fenton type reaction,” Bulletin of the Chemical Society of Japan, 55(3), 666-673 (1982)
Fox M. A., Dulay M. T., “Heterogeneous Photocatalysis,” Chemical Reviews, 93, 341-357(1993)
Fischer, K., Grimm, M., Meyers, J., Dietrich, C., Gläser, R., & Schulze, A. Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. Journal of Membrane Science, 478, 49-57 (2015)
Fu, C.-C., Juang, R.-S., Huq, M. M., & Hsieh, C.-T. Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. Journal of the Taiwan Institute of Chemical Engineers, 67, 338-345 (2016).
Getoff, N., “Radiation induced decomposition of biological resistant pollutant in water,” Applied Radiation and Isotopes, 37, 1103-1109 (1986)
Guo, Z., Ma, R., & Li, G. Degradation of phenol by nanomaterial TiO2 in wastewater. Chemical Engineering Journal, 119(1), 55-59 (2006)
Geim, A. K., & Novoselov, K. S. The rise of graphene. Nature, 6, 183-191 (2007)
Hummers, W. S., Offeman, R. E. “Preparation of graphitic oxide,” Journal of the American Chemical Society, 80, 1339 (1958)
Hofstadler, K., Bauer, R., Novalic, S. and Heisler, G., “Now Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fased-Silica Glass Fiber”, Environmetnal Science and Technology, 28, 670-674 (1994)
Herrmann J. M., Tahiri H., Ait-Ichon Y., Lassaletta G., Gonzalez-Elipe A. R., Fernandez A., “Characterization and Photocatalytic Activity in Aqueous Medium of TiO2 and Ag-TiO2 Coatings on Quartz,” Applied Catalysis B: Environmental, 13, 219-228 (1997)
Hicks, R., Jeong, J., Babayan, S., Schuetze, A., Park, Jaeyoung; Herrmann, H., Henins, I., Selwyn, G.. “Materials processing with atmospheric-pressure plasma jets,” IEEE Int. conf. Plasma sci., 178 (1998)
Hu, Z.S., Dong, J.X., Chen G.X., “Preparation of nanometer titanium oxide with n-butanol supercritical drying”, Powder Technology, 101, 205-210 (1999)
Hermann, J. M., “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants,” Catalysis Today, 53, 115-129 (1999)
Harizanov1,O., Harizanova, A., “Development and Investigation of Sol-Gel Solutions for the Formation of TiO2 Coatings,” Solar Energy Materials & Solar Cells, 63, 185-195 (2000)
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kera, Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, 30, 429-436 (2001)
Hojjati, B., Sui, R., & Charpentier, P. A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer, 48(20), 5850-5858 (2007)
He, C., Tian, B., & Zhang, J. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. Journal of Colloid Interface Science, 344(2), 382-389 (2010)
Hu, J., Li, H., Wu, Q., Zhao, Y., & Jiao, Q. Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances. Chemical Engineering Journal, 263, 144-150 (2015)
Izumi, I., Dunn, W.W., Wilboum, K.O., Fan F.-R.F, Bard A.J. “Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders,” Journal of Physical Chemistry, 84(24), 3207-3210 (1980)
Jalava, J.P., Heikkila, L., Hovi, O., Laiho, R., Hiltunen, E., Hakanen, A., Harna, H., “Structural Investigation of Hydrous TiO2 Precipitates and Their Aging Products by X-ray Diffraction, Atomic Force Microscopy, and Transmission Electron Microscopy,” Industrial Engineering Chemistry Research, 37, 1317-1323(1998)
Jincai, Z., Fenglei, Z., Tao, S., Hisao, H., Ezio, P., Nick, S., “TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersion under visible light irradiation,” Applied Catalysis B: Environmental, 15, 147-156(1998)
Juang, R.-S., Huang, C., Jheng, H.-Y., Li, C., Wu, L.-Y., & Chang, Y.-J. Cyclonic plasma activation on microporous poly(vinylidene fluoride) membranes for improving surface hydrophilicity. Journal of the Taiwan Institute of Chemical Engineers, 54, 76-82 (2015)
Klinghoffer Alec A., Ramon L. Cerro, Martin A. Abraham , “Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst,” Catalysis Today, 40, 59-71(1998)
Kim, S.J., Park, S.D., Jeong, Y. H., “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution,” Journal of the American Ceramic Society, 82(4), 927-932 (1999)
Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., Yoshida, S. “Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, 126, 117-123 (1999)
Kaliwoh N., Zhang J. –Y., Boyd I. W., “Titanium Dioxide Films Prepared by Photo-Induced Sol-gel Processing Using 172 nm Excimer Lamps,” Surface Coatings Technology, 125, 424-427 (2000)
Konstantinou, I. K., & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Catalysis B: Environmental, 49(1), 1-14 (2004)
Kuzmenko, A. B., van Heumen, E., Carbone, F., & van der Marel, D. Universal optical conductance of graphite. Physical Review Letters, 100(11), 117401 (2008)
Linsebigler A. L., Lu G., Yates John T., Jr. “Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results,” Chemical Review, 95(3), 735-758 (1995)
Loh K.C., T.S. Chung, W.F. Ang, “Immobilized-cell membrane bioreactor for high-strength phenol wastewater,” Journal of Environmental Engineering, 126(1), 75-79 (1999).
Lee, D.S., Liu T.K., “Preparation of TiO2 Sol Using TiCl4 as a Precursor ,” Journal of Sol-Gel Science and Technology,25(2), 121-136 (2002)
Li , F. B., & Li , X. Z. The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere, 48, 1103-1111 (2002)
Li Z., M. Wu, Z. Jiao, B. Bao, S. Lu, “Extraction of phenol from wastewater by N-octanoylpyrrolidine,” Journal Hazard. Mater., 114, 111-114 (2004)
Lee, C., Wei, X., W. Kysar, J., & Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. SCIENCE, 321(5887), 385-388 (2008).
Li, X., Cai, W., An, J., Kim, S., & Nah, J. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. SCIENCE, 324(5932), 1312-1314 (2009)
Liang, Y., Wang, H., Sanchez Casalongue, H., Chen, Z., & Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 3(10), 701-705 (2010)
Le, H. A., Linh, L. T., Chin, S., & Jurng, J. Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technology, 225, 167-175 (2012)
Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. Transformations of nanomaterials in the environment. Environ Sci Technol, 46(13), 6893-6899 (2012)
Matthews, R. W. “Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxides,” Journal of Physical Chemistry, 91, 3328-3333 (1987)
Mills, A. and Morris, S., “Photomineralization of 4-chlorophenol sensitized by titanium dioxide:a study of the initial kinetics of carbon dioxide photogeneration,” Journal of Photochemistry and Photobiology A: Chemistry, 71(1), 75-83 (1993)
Martin, S.T., Lee, A.T., Hoffmann, M.R., “Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons”, Environmental Science and Technology, 29(10), 2567-2573 (1995)
Michael L. Sauer, Michael A. Hale, David F. Ollis, “Heterogenous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air,” Journal of Photochemistry and Photobiology A: Chemistry, 88(2-3), 169-178 (1995)
Mills, A., Hunte, S.L. “An Overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35 (1997)
Mordocco, A., Kuek, C., Jenkins, R., “Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida,” Enzyme Microbial Technology, 25(6), 530-536 (1999)
Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. The structure of suspended graphene sheets. Nature, 446(7131), 60-63 (2007)
Madaeni, S. S., Zinadini, S., & Vatanpour, V. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. Journal of Membrane Science, 380(1-2), 155-162 (2011)
Min, Y., Zhang, K., Zhao, W., Zheng, F., Chen, Y., & Zhang, Y. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal, 193-194, 203-210 (2012)
Nozik A. J., Memming R., “Physical Chemistry of Semiconductor- Liquid Interfaces,” Journal Physical Chemistry, 100, 13061-13078 (1996)
Nasker S., Pillay S. A., Chanda M., “Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet,” Journal of Photochemistry and Photobiology A: Chemistry, 113(3), 257-264 (1998)
Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N., Madras, G. “Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity,” Langmuir, 20, 2900-2907 (2004)
Nuhoglu A., B. Yalcin, “Modeling of phenol removal in a batch reactor,” Process Biochemistry, 40, 1233-1239 (2005)
Novoselov, K. S., Fal'ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., & Kim, K. A roadmap for graphene. Nature, 490(7419), 192-200 (2012)
Pruden, A.L., Ollis, D.F., “Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium dioxide,” Enivronmental Science and Technology, 17(10), 628-631 (1983)
Peyton, G.R., Smith, M.A., Peyton, B.M., “Photolytic ozonation for protection and rehabilitation of groundwater resources: A mechanistic study,” University of Illinois Water Resources Center, Reserearch Report, (1987)
Phani, G., Tulloch, G., Vittorio, D., Skryabin, I., “Titania solar cells: new photovoltaic technology,” Renewable energy, 22(1), 303-309 (2001)
Patil, K.R., Sathaye, S.D., Khollam, Y.B., Deshpande, S.B., Pawaskar, N.R.; Mandale, A.B., “Preparation of TiO2 Thin Films by Modified Spin-Coating Method Using an Aqueous Precursor,” Materials Letter, 57(12), 1775– 1780 (2003)
Pu, X., Zhang, D., Gao, Y., Shao, X., Ding, G., Li, S., & Zhao, S. One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. Journal of Alloys and Compounds, 551, 382-388 (2013).
Rominder, P. S., Lin, J., Hand, D. W., Crittenden, J. C., Perram, D. L., Mulins, M. E., “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, 65(5), 655-673 (1993)
Robert, D., Piscopo, A., Weber, J.V., “Comparison between the reactivity of commercial and synthetic TiO2 photocatalysts,” Journal of Photochemistry and Photobiology A Chemistry, 139(2-3), 253-256 (2001)
Reddy, K. M., Manorama, S. V., Reddy, A. R. “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles,” Materials Chemistry and Physics, 78(1), 239-245 (2003)
Rauf, M. A., Meetani, M. A., Khaleel, A., & Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157(2-3), 373-378 (2010)
Sudoh, M., Kodera, T., Sakai, K., “Oxidative degradation of aqueous phenol effluent with Fenton's reagent,” Journal of Chemical Engineering of Japan, 19(6), 513-518(1986)
Shen H. S., Gao Y. M., Dwight K., Wold A., “Prearation and Photocatalytic Properties of TiO2 Film,” Materials Research Bulletin, 27(9), 1023-1030 (1992)
Stafford, U., Gray, K. A., Kamat, P. V., “Photocatalytic Degradation of 4-Chlorophenol: The Effects of Varying TiO2 concentration and Light Wavelength,” Journal of Catalysis, 167, 25-32 (1997)
Sakai H., Kawahara H., Shimazaki M., Abe M., “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reaction in the Inner Aqueous Phase of Reversed Micelles : Effect of Alcohol Addition,” Langmuir, 14, 2208-2212 (1998)
Sonawane R.S., Hegde S.G., Dongare M.K., “Preparation of Titanium(IV) Oxide Thin Film Photocatalyst by Sol–Gel Dip Coating,” Materials Chemistry and Physics, 77(3), 744–750 (2002)
Sun, B., Vorontsov, A. V., Smirniotis, P. G., “Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation, ” Langmuir, 19(8), 3151-3156 (2003)
Sun, B., Smirniotis, P. G., “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, ” Catalysis Today, 88(1-2), 49-59 (2003)
Sathish, M., Viswanath, R.P., “Electrochemical degradation of aqueous phenols using graphite electrode in a divided electrolytic cell,” Korean Journal of Chemical Engineering, 22 (3), 358-363 (2005)
S.Wavhal, D., & Fisher, E. R. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. Journal of Membrane Science, 209, 255-269 (2002)
Tunesi, S., Andeson, M., “Influence of Chenmlsorption on the Photodecomposition of Salicylic Acid and Related Compounds Using Suspended TiO2, Ceramic Membranes,” Journal of Physical Chemistry, 95, 3399-3405 (1991)
Tanaka. S., Gupta H., “PhotoCatalytic Mineralisation of Perchloroethylene Using Titanium Dioxide,” Water Science and Technology, 31, 47-54 (1995)
Tanaka Y., Suganuma M., “Effects of Heat Treatment on Photocatalytic Property of Sol-gel Derived Polycrystalline TiO2,” Journal of Sol-Gel Science and Technology, 22, 83-89 (2001)
Takata,Y., Hidaka, S., Masuda M., “Pool boiling on a superhydrophilic surface,” International Journal of Energy Research, 27(2), 111-119 (2003)
Weir, B.A., Sundstrom, D.W., Klei, H.E., “Destruction of benzene by ultraviolet light-catalyzed oxidation with hydrogen peroxide,” Environmental Progress, 8 (1), 6-11 (1989)
Wisniewski, C., Cruz, A.L., Grasmick, A., “Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor,” Biochemical Engineering Journal, 3(1), 61-69 (1999)
Wang, C.C., Ying, J. Y., “Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals ,” Chemistry of Materials,11, 3113-3120 (1999)
Wang, C.C., Lee, C.M., Lu, C.J., Chuang, M.S.; Huang, C.Z., “Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria,” Chemosphere, 41, 1873-1879 (2000)
Wu, C., Liu, X., Wei, D., Fan, J., & Wang, L. Photosonochemical degradation of Phenol in water. Water Research, 35(16), 3927-3933 (2001).
Wang, C., Deng, Z.X., Li, Y., “The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media,” Inorganic Chemistry, 40(20), 5210-5214 (2001)
Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., . . . Liu, J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano, 3(4), 907-914 (2009)
Yamazaki-Nishida, S., Nagano, K.J., Cervera-March, S., Anderson M.A., “Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets’’, Journal Photochemistry Photobiology A:Chemistry, 70, 95-99 (1993)
Yu J., Yu J. C., Ho W., Jiang Z., “Effects of Calcination Temperature on the Photocatalytic Activity and Photo-Induced Super-Hydrophilicity of Mesoporous TiO2 Thin Films,” New Journal Chemistry, 26(5), 607-613 (2002)
You, S. J., Semblante, G. U., Lu, S. C., Damodar, R. A., & Wei, T. C. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2. Journal of Hazardous Materials, 237-238, 10-19 (2012).
Zeep, R. G., “Factors Affecting the Photochemical Treatment of Hazardous Waste,” Environmental Science and Technology, 22( 3), 256-257 (1988)
Zeltner W. A., Fu X., Anderson M. A., “The Gas-Phase Photocatalytic Mineralization of Benzene on Porous Titania-Based Catalysts,” Applied Catalysis B: Environmental, 6, 209-224 (1995)
Zhang J. –Y, Boyd I. W., Bie L. –J., Dusastre V., “Thin Tantalum Oxide Films Prepared by 172 nm Excimer Lamp Irradiation Using Sol-gel Method,” Thin Solid Film, 318(1-2), 252-256(1998)
Zhang Q., Gao L., Guo J., “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis”, Applied Catalysis B, 26(3), 207-215 (2000)
Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 4(1), 380-386 (2009)
王金松、高瑞賢、陳和瑞,電子學Ι,全華科技圖書股份有限公司(2001)
王建文,「純氧活性污泥法處理綜合性工業廢水之研究」,國立中央大學環境工程研究所,18-39(1990)
司洪濤、呂冠霖、黃香玫,「氧化技術在高濃度COD廢水處理之應用」,(2003)
台灣產業服務基金會,「產業高濃度廢液之處理程序研析」,產業綠色技術輔導與推廣計畫(一),20-26
何淑珠,「以紫外線/氧化劑程序處理氯酚有機類廢水之研究」,國立台灣工業技術學院工程技術研究所,碩士論文(1989)
吳承穎,「二氧化鈦光觸媒氧化降解酚化合物之動力學」,元智大學化學工程與材料科學學系碩士論文(2005)
吳炳佑、陳湘林、蔣孝澈,「二氧化鈦光觸媒膜之製作與應用」,觸媒與製程,第6卷,52-68(1997)
呂宗昕,「圖解奈米科技與光觸媒」,164~211頁 (2003)
洪雨利,「溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究」,國立中山大學環境工程研究所碩士論文(2004)
袁中新、蕭德福、吳政峰、洪崇軒,「二氧化鈦光觸媒改質及四氯乙烯轉化率及礦化率」,第十七屆空氣污染控制技術研考會論文集(2000)
黃文靜,「混和溶劑萃取與生物膜技術自高鹽或強酸溶液中降解酚」,元智大學化學工程與材料科學學系碩士論文(2005)
張智凱,「以不同晶相之二氧化鈦光觸媒催化分解酚」,元智大學化學工程與材料科學學系碩士論文(2008)
郭畊甫,「不同TiO2鍍膜系統對亞甲基藍光降解與親水性之影響」,大同大學材料工程系碩士論文(2009)
林麗娟,「X光繞射原理及其應用」,工業材料86期,100~109頁(1994)
顧明浩, 張軍, & 王曉琳. 聚偏氟乙烯微孔膜製備方法研究進展. 工業水處理, 26, 5-9(2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top