|
[1]H.Yan, Q.Fu, Y.Zhou, D.Li, and D.Zhang, “CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization,” Int. J. Green house Gas Control, 51, pp.1–10, 2016. [2]J.D.Figueroa, T.Fout, S.Plasynski, H.McIlvried, and R. D.Srivastava, “Advances in CO2 capture technology-The U.S. department of energy’s carbon sequestration program,” Int. J. Greenh. Gas Control, 2, pp.9–20, 2008. [3]S. J.Davis, K.Caldeira, and H. D.Matthews, “Future CO2 emissions and climate change from existing energy infrastructure,” Science, 329, 2010. [4]S.Solomon et al., “IPCC, Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change,” pp.302–804, 2007. [5]工業技術研究院化學工業研究所, “二氧化碳回收技術.” [6]朱育廷, “正己醇 / 正戊醇水溶液在活性碳之雙成份吸附平衡,” 長庚大學, 2006. [7]盧贊生, “用沸石作分離及吸附程序之研究,” 國立清華大學, 1988. [8]杜奕旻, “二氧化碳/甲烷雙成分混合氣體之變壓吸附模擬研究,” 長庚大學, 2016. [9]K. S. W. S.S.J.Gregg, Adsorption,surface area and porosity. [10]K. S. K.Douglas M. Ruthven, Shamsuzzaman Farooq, Pressure Swing Adsorption. . [11]L. H.Shendalman and J. E.Mitchell, “A study of heatless adsorption in the model system CO2 in He, I,” Chem. Eng. Sci., 27, pp.1449–1458, 1972. [12]K.Weaver andC. E.Hamrin, “Separation of hydrogen isotopes by heatless adsorption,” Chem. Eng. Sci., 29, pp.1873–1882, 1974. [13]E. S.Kikkinides, J. A.Ritter, and R. T.Yang, “Pressure swing adsorption for simultaneous purification and sorbate recovery,” J. Chinese Inst. Chem. Eng., vol. 22, pp. 399–407, 1991. [14]Y. J.Kim, Y. S.Nam, andY. T.Kang, “Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas,” Energy, 91, pp.732–741, 2015. [15]J.Ling, P.Xiao, A.Ntiamoah, D.Xu, P.Webley, and Y.Zhai, “Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology,” Chinese J. Chem. Eng., 24, pp.460–467, 2016. [16]D.Li et al., “Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process,” Chem. Eng. J., 297, pp.315–324, 2016. [17]S.-H.Cho, J.-H.Park, H.-T.Beum, S.-S.Han, and J.-N.Kim, “A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption,”, pp.405–410., 2004 [18] D.Ko, R.Siriwardane, and L. T.Biegler, “Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture,” 2005. [19]J.Zhang, P. A.Webley, and P.Xiao, “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas,” Energy Convers. Manag., 49, pp.346–356, 2008. [20]Z.Liu, C. A.Grande, P.Li, J.Yu, and A. E.Rodrigues, “Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas,” Sep. Purif. Technol., 81, pp.307–317, 2011. [21]L.Wang et al., “Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant,” Chem. Eng. Sci., 101, pp.615–619, 2013. [22]Jérôme Merel, M.Clausse, and F.Meunier, “Experimental investigation on CO2 post−combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites,” 2007. [23]C.Shen, Z.Liu, P.Li, and J.Yu, “Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads,” Ind. Eng. Chem. Res., 51, pp.5011–5021, 2012. [24]B.R.B, S.W.E, and L.E.N, Transport phenomena.
|