跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴怡禎
研究生(外文):Yi Chen Lai
論文名稱:皮質-膝狀核突觸傳遞和其可塑性研究
論文名稱(外文):Characterization of corticogeniculate synaptic transmission and plasticity
指導教授:楊雅晴楊雅晴引用關係
指導教授(外文):Y. C. Yang
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:皮質-視丘迴路皮質-膝狀核突觸短期突觸可塑性NMDA受體
外文關鍵詞:corticothalamic pathwaycorticogeniculate synapseshort-term plasticityNMDA receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
視丘是感覺訊息傳入大腦皮質的中繼站。視丘背外側膝狀核負責接收來自眼睛的視覺訊息整合後再傳至大腦皮質,而皮質會回饋調整視丘的訊息。皮質與視丘訊息的雙向震盪,也是睡眠中重要的生理現象,並影響感覺訊息的傳遞。本研究想要探討皮質至膝狀核突觸基本的傳遞特性,進而推測皮質-膝狀核訊息傳遞可能的生理意義。
藉由刺激皮質神經元軸突纖維,我們可以在視丘背外側膝狀核神經元記錄到突觸後麩胺酸受體 (包括AMPA受體與NMDA受體) 電流。實驗結果顯示AMPA受體電流呈現短期增強性 (short-term facilitation),而NMDA受體電流之短期突觸可塑性則比較複雜。在膜電位+40 mV時,許多皮質-膝狀核突觸之突觸後NMDA受體電流呈現短期突觸抑制性 (short-term depression),可能是突觸後NMDA受體飽和所致。另一部分的皮質-膝狀核突觸其NMDA受體飽和情況較不顯著,其NMDA受體電流稍具短期突觸增強性或不具明顯短期可塑性。然而,在膜電位-70 mV時,NMDA受體電流皆一致地呈現短期突觸增強性。另一方面,我們也發現突觸前動作電位並不是極為忠實地傳遞至突觸後,而是藉由NMDA受體激活,使突觸後動作電位數目增加且放電時間延長。這些研究結果表明一由上而下的訊息傳遞,即皮質-視丘突觸可能是藉由突觸後NMDA受體,使皮質可以由此途徑調控視丘-皮質傳遞神經元的活動。
The thalamic nuclei are strongly and mutually connected with the cerebral cortex. These form the thalamo-cortico-thalamic circuits which are responsible for many important brain functions such as sensory processing and sleep-wakefulness regulation. For instance, visual signals are sent via the optic nerve to the lateral geniculate nucleus (LGN) of the thalamus, which then relays the visual information to the primary visual cortex (area V1) in the occipital lobe. However, the thalamus does not simply relay sensory information. It also receives feedback projections from the cerebral cortex. In this study, we characterized the basic properties of corticogeniculate synaptic transmission and plasticity and explored their possible physiological significance.
By stimulating presynaptic cortical fibers, we recorded excitatory postsynaptic currents from dLGN neurons and found that the corticogeniculate synapse displays characteristic short-term facilitation for postsynaptic AMPA receptor currents. On the other hand, NMDA receptor currents show apparent short-term facilitation at negative membrane potentials and short-term depression ascribable to NMDA receptor saturation at +40 mV in most neurons. In the current-clamp mode, we found that presynaptic activity does not faithfully transmit to the postsynaptic cells. Instead, postsynaptic response could be amplified and prolonged by NMDA receptor activation. These findings suggest that the corticothalamic synapse may contribute to a top-down control of thalamocortical neuronal responsiveness via a NMDA receptor-dependent mechanism.
指導教授推薦書
口試委員會審定書
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
第一章 緒論 1
1.1 感覺途徑的一環 視丘 1
1.2 背外側膝狀核 (dorsal lateral geniculate nucleus, dLGN)與視覺傳遞路徑 1
1.3皮質-膝狀核突觸 (corticogeniculate synapse) 回饋訊息傳遞之重要性 2
1.4 視丘皮質震盪與睡眠的關係 3
1.5 皮質 膝狀核訊息傳遞的方式 4
1.6 麩胺酸受體 5
1.7 皮質-膝狀核上受體的種類 8
1.8 突觸可塑性 9
1.9 皮質 膝狀核突觸之可塑性 10
1.10 研究目的 11
第二章 實驗材料與方法 13
2.1 實驗前置準備 13
2.2 腦切片的製備 14
2.3 細胞膜箝制全細胞記錄 14
2.4 於腦切片上記錄皮質-膝狀核突觸後電流 14
2.5 數據分析 16
第三章 實驗結果 17
3.1 皮質-膝狀核突觸之傳遞強度受突觸前刺激強度影響 17
3.2 NMDA受體對皮質-膝狀核突觸之傳遞的角色 19
3.3 皮質-膝狀核突觸後離子型麩胺酸受體的電位依賴性 22
3.4 皮質-膝狀核給予成對刺激之時間間隔愈短,短期突觸可塑性愈顯著,且會隨間隔時間拉長而回復 23
3.5突觸前成串刺激所引起之皮質-膝狀核興奮性突觸後電流的變化 24
3.6在皮質神經纖維進行連續刺激會短暫改變皮質-膝狀核突觸的特性 27
第四章 討論 29
4.1主要研究結果綜述 29
4.2 皮質-膝狀核突觸傳達的基本特性 30
4.3 不同膜電位NMDA受體突觸後電流的改變 32
4.4 連續刺激造成的短期釋放增強性 33
4.5實驗結果的生理意義 34
參考文獻 36
附圖 48

圖目錄
圖一、視丘膝狀核主要訊息傳遞路徑圖 48
圖二、腦切片上刺激與記錄電極示意圖 49
圖三、刺激強度對皮質-膝狀核突觸後電流的影響 50
圖四、在不同刺激強度下突觸前成對刺激對突觸後電流的影響51
圖五、刺激強度對皮質-膝狀核突觸短期可塑性之影響 52
圖六、刺激強度對皮質-膝狀核突觸後NMDA受體電流的影響 53
圖七、在不同刺激強度下,突觸前成對刺激對突觸後NMDA受體電流的影響 54
圖八、刺激強度對皮質-膝狀核突觸NMDA受體PPR之影響 55
圖九、NMDA受體的低親和力抑制劑L-AP5對皮質-膝狀核突觸後NMDA受體之興奮性電流的影響━分析在膜電位+40 mV時,以30 μA進行突觸前成對刺激,EPSC2小於EPSC1的突觸 56
圖十、NMDA受體的低親和力抑制劑L-AP5對皮質-膝狀核突觸後NMDA受體之興奮性電流的影響━分析在膜電位+40 mV時,以30 μA進行突觸前成對刺激,EPSC2大於EPSC1的突觸 57
圖十一、在不同膜電位下,突觸前刺激對突觸後電流之影響 58
圖十二、不同時間間隔之成對突觸前刺激所產生皮質-膝狀核突觸後AMPA受體電流變化 59
圖十三、不同時間間隔的突觸前成對刺激對突觸後膝狀核NMDA受體電流的影響 60
圖十四、在膜電位-70 mV,不同時間之間隔成對突觸前刺激所產生皮質-膝狀核突觸後NMDA受體電流變化 61
圖十五、分別以10、20或50 Hz固定頻率於突觸前進行成串刺激產生之AMPA受體突觸後電流 62
圖十六、在膜電位+40 mV下,分別以5、20或50 Hz固定頻率於突觸前進行成串刺激產生之NMDA受體突觸後電流 63
圖十七、在膜電位-50 mV下,分別以5、20或50 Hz固定頻率於突觸前進行成串刺激產生之NMDA受體突觸後電流 64
圖十八、將在膜電位+40 mV時,NMDA受體電流的PPR 在0.5-1間的細胞箝制在膜電位-70 mV下,分別以10、20或50 Hz固定頻率於突觸前進行成串刺激產生之NMDA受體突觸後電流 65
圖十九、將在膜電位+40 mV時,NMDA受體電流的PPR 在1.5-2.5間的細胞箝制在膜電位-70 mV下,分別以10、20或50 Hz固定頻率於突觸前進行成串刺激產生之NMDA受體突觸後電流 66
圖二十、分別以10、20或50 Hz固定頻率於突觸前進行成串刺激產生之AMPA受體和NMDA受體突觸後電流 67
圖二十一、NMDA受體在皮質神經纖維活動所引發之膝狀核之突觸後動作電位的貢獻 68
圖二十二、固定頻率突觸前連續成串刺激後突觸電流的改變 69
圖二十三、將膜電位箝制在-70 mV下,以固定頻率進行突觸前成串刺激後一段時間內突觸後NMDA受體電流的改變 70
圖二十四、將膜電位箝制在+40 mV下,以固定頻率進行突觸前成串刺激後一段時間內突觸後NMDA受體電流的改變 71
圖二十五、突觸前連續刺激後,突觸後細胞上NMDA受體電流隨時間改變的統計結果 72
圖二十六、突觸後細胞起始電位在-70 mV,突觸前以固定10 Hz頻率連續刺激後其突觸後動作電位的改變 73
圖二十七、突觸後細胞起始電位在-70 mV,突觸前以固定20 Hz頻率連續刺激後其突觸後動作電位的改變 74
圖二十八、突觸後細胞起始電位在-70 mV,突觸前以固定50 Hz頻率連續刺激後其突觸後動作電位的改變 75
圖二十九、以固定頻率連續刺激後,突觸後動作電位的統計圖 76
Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796-803.
Achermann P, Borbely AA (1997) Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81:213-222
Ahlsen G, Grant K, Lindström S (1982) Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers. Brain Research 234:454-458.
Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. The Journal of Neuroscience 16:5661-5671.
Alexander GM, Fisher TL, Godwin DW (2006) Differential response dynamics of corticothalamic glutamatergic synapses in the lateral geniculate nucleus and thalamic reticular nucleus. Neuroscience 137:367-372.
Alexander GM, Godwin DW (2006) Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Research 71:1-22.
Ambrosini A, Bresciani L, Fracchia S, Brunello N, Racagni G (1995) Metabotropic glutamate receptors negatively coupled to adenylate cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro. Molecular Pharmacology 47:1057-1064.
Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913-917.
Augustinaite S, Yanagawa Y, Heggelund P (2011) Cortical feedback regulation of input to visual cortex: role of intregeniculate interneurons. The Journal of Physiology 589:2963-2977
Beierlein Y-GSaM (2011) Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses. Journal of Neurophysiology 105:2319-2329.
Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. The Journal of Neuroscience 22:9679-9686.
Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. The Journal of Neuroscience 18:8648-8659.
Bergmann BM, Winter JB, Rosenberg RS, Rechtschaffen A (1987) NREM sleep with low-voltage EEG in the rat. Sleep 10:1-11.
Bishop WJ (1933) The Autobiographies of British Medical Men. Philosophical Transactions of the Royal Society B 26:398-404.
Bourassa J, Deschenes M (1995) Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66:253-263.
Burnashev N, Rozov A (2005) Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37:489-495.
Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56:2-5.
Cotman CW, Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science 225:1287-1294.
Cudeiro J, Sillito AM (2006) Looking back: corticothalamic feedback and early visual processing. Trends in Neurosciences 29:298-306.
Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Science's STKE 2004:re16.
Danbolt NC (2001) Glutamate uptake. Progress in Neurobiology 65:1-105.
Dennis M. Dacey, Farrel R. Robinson, Beth B. Peterson, Gamlin aPD (2003) Fireworks in the primate retina in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37:15-27.
Endoh T (2004) Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Research 1024:212-224.
Erisir A, Van Horn SC, Bickford ME, Sherman SM (1997a) Immunocytochemistry and Distribution of Parabrachial Terminals in the Lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. The Journal of Comparative Neurology. 377:535-549
Erisir A, Van Horn SC, Sherman SM (1997b) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the United States of America 94:1517-1520.
Ferster D, Lindstrom S (1985) Synaptic excitation of neurones in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. The Journal of Physiology 367:233-252.
Fine RN, Koch VH, Boechat MI, Lippe BH, Nelson PA, Fine SE, Sherman BM (1990) Recombinant human growth hormone (rhGH) treatment of children undergoing peritoneal dialysis. Peritoneal Dialysis International 10:209-214.
Fitzgibbon T, Tevah LV, Sefton AJ (1995) Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: a WGA-HRP study. The Journal of Comparative Neurology 363:489-504.
Fletcher EJ, Lodge D (1996) New developments in the molecular pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors. Pharmacology and Therapeutics 70:65-89.
Granseth B (2004) Dynamic properties of corticogeniculate excitatory transmission in the rat dorsal lateral geniculate nucleus in vitro. The Journal of Physiology 556:135-146.
Gabriel L, Lvov A, Orthodoxou D, Rittenhouse AR, Kobertz WR, Melikian HE (2012) The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3beta-dependent, protein kinase C (PKC)-mediated endocytic trafficking. The Journal of Biological Chemistry 287:32354-32366.
Govindaiah G, Cox CL (2006) Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus. The Journal of Neuroscience 26, 13443-13453.
Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102-105.
Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends in Neurosciences 26:81-89.
Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science 252:851-853.
Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annual Review of Neuroscience 17:31-108.
Huganir RL, Song I (2002) Regulation of AMPA receptors during synaptic plasticity. Trends in Neurosciences 25:578-588.
Huxlin KR, Carr R, Schulz M, Sefton AJ, Bennett MR (1995) Trophic effect of collicular proteoglycan on neonatal rat retinal ganglion cells in situ. Brain Research 84:77-88.
Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS 313:34-38.
Isope P, Hildebrand ME, Snutch TP (2012) Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. Cerebellum 11: 651-665.
Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529-531.
Johnson JW, Ascher P (1990) Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophysical Journal 57:1085-1090.
Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philosophical Transactions of the Royal Society B 357:1659-1673.
Juan A, Varela KS, Jay Gibson, Joshua Fost, L F Abbott, and Sacha B Nelson (1997) A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex. The Journal of Neuroscience 17:7926-7940.
Kanai Y, Smith CP, Hediger MA (1993) A new family of neurotransmitter transporters: the high-affinity glutamate transporters. FASEB journal 7:1450-1459.
Krosigk MV, Monckton JE, Reiner PB, McCormick DA (1999) Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience 91(1):7-20
Kumar SS, Bacci A, Kharazia V, Huguenard JR (2002) A Developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. The Journal of Neuroscience 22: 3005-3015.
Lea PM, Custer SJ, Vicini S, Faden AI (2002) Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacology, Biochemistry, and Behavior 73:287-298.
Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565-567.
Lindstrom S, Wrobel A (1990) Frequency dependent corticofugal excitation of principal cells in the cat's dorsal lateral geniculate nucleus. Experimental Brain Research 79:313-318.
Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554-561.
Liu T, Petrof I, and Sherman SM (2015). Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse thalamus. Journal of Neurophysiology 113: 2646-2652.
Lilliu V, Pernas-Alonso R, Trelles RD, Di Porzio U, Zuddas A, Perrone-Capano C (2001) Ontogeny of AMPA receptor gene expression in the developing rat midbrain and striatum. Molecular Brain Research 96: 133-141,
Marks GA, Shaffery JP, Oksenberg A, Speciale SG, Roffwarg HP (1995) A functional role for REM sleep in brain maturation. Behavioural Brain Research 69:1-11.
McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiological Reviews 74:723-760.
McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience 20:185-215.
Mercer A, West DC, Morris OT, Kirchhecker S, Kerkhoff JE, Thomson AM (2005) Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. Cerebral Cortex 15:1485-1496.
Mukhametov LM, Poliakova IG (1981) [Electroencephalographic study of sleep in Sea of Azov porpoises]. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I P Pavlova 31:333-339.
Platt SR (2007) The role of glutamate in central nervous system health and disease--a review. Veterinary Journal 173:278-286.
Pu M, Berson DM, Pan T (1994) Structure and function of retinal ganglion cells innervating the cat's geniculate wing: an in vitro study. The Journal of Neuroscience 14:4338-4358.
Rajasekaran K, Todorovic M, Kapur J (2012) Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Annals of Neurology 72: 91-102.
Rogawski MA, Donevan SD (1999) AMPA receptors in epilepsy and as targets for antiepileptic drugs. Advances in Neurology 79:947-963.
Salt TE, and Binns KE (2000). Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-D-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons. Neuroscience 100: 375-380.
Scannel JW, Grant S, Payne BR, Baddeley R (2000) On variability in the density of corticocortical and thalamocortical connections. Philosophical Transactions of the Royal Society B 355:21-35
Schiller PH (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824-825.
Sherman SM (2007) The thalamus is more than just a relay. Current Opinion in Neurobiology 17:417-422.
Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. Journal of Neurophysiology 106:1068-1077.
Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. The Journal of Neuroscience 17:7503-7522.
Shyu BC, Vogt BA (2009) Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway. Molecular Pain 5:51.
Sillito AM, Cudeiro J, Jones HE (2006) Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences 29(6):307-316
Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001) mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 40:856-865.
Sladeczek F, Momiyama A, Takahashi T (1993) Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatory transmission in visual cortical neurons. Philosophical Transactions of the Royal Society B 253:297-303.
Standaert, D.G., Testa, C.M., Penney, J.B. and Young, A.B. (1994)Organization of N-methyl-paspartate glutamate receptor gene expression in the basal ganglia of the rat. The Journal of Comparative Neurology 343: l-16.
Standaert DG, Landwehrmeyer GB, Kerner JA, Penney JB, Jr., Young AB (1996) Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Molecular Brain Research 42:89-102.
Steriade, M., McCormick, D.A., and Sejnowski, T.J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679-685.
Steriade M, Timofeev I (1997) Short-term plasticity during intrathalamic augmenting responses in decorticated cats. The Journal of Neuroscience 17:3778-3795.
Sugita S, Shin O, Han W ,Lao Y and Sudhof TC (2002) Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. The EMBO Journal 21, 270-280
Sun YG and Beierlein M (2011) Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses. Journal of Neurophysiology 105(5): 2319-2329.
Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. Journal of Neurophysiology 95:1727-1734.
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews 62:405-496.
Tsumoto T, Creutzfeldt OD, Legendy CR (1978) Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Experimental Brain Research 32:345-364.
Turner JP, Salt TE (1998) Characterization of sensory and corticothalamic excitatoty inputs to rat thalamocortical neurons in vitro. The Journal of Physiology 510:829-843.
Updyke BV (1975) The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. The Journal of Comparative Neurology 163:377-395.
Van Essen DC (2005) Corticocortical and thalamocortical information flow in the primate visual system. Progress in Brain Research 149:173-185.
Wang S, Bickford ME, Van Horn SC, Erisir A, Godwin DW, Sherman SM (2001) Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. The Journal of Comparative Neurology 440, 321-341.
Wyllie DJ, Livesey MR, Hardingham GE (2013) Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74:4-17.
Zarrinpar A, Callaway EM (2006) Local connections to specific types of layer 6 neurons in the rat visual cortex. Journal of Neurophysiology 95:1751-1761.
Zhou M, Kimelberg HK (2001) Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. The Journal of Neuroscience 21:7901-7908.
Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annual Review of Physiology 64:355-405.
Zukin RS, Bennett MV (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosciences 18:306-313.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top