跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪傳典
研究生(外文):Chuan Tien Hung
論文名稱:細胞蛋白質 Far Upstream Element-Binding Protein 1 與其病毒切割產物對於腸病毒71型 Internal Ribosome Entry Site 轉譯機制的加成作用
論文名稱(外文):Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product
指導教授:施信如施信如引用關係劉世東
指導教授(外文):S. R. ShihS. T. Liu
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:86
中文關鍵詞:腸病毒71型FBP1IRES調控轉譯機制2A病毒蛋白酶加成作用
外文關鍵詞:EV71FBP1IRES-driven TranslationViral 2A ProteinaseAdditive Promotion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒71型 (EV71) 基因體的五端非轉譯區中包含了對於病毒蛋白質轉譯作用不可或缺的 internal ribosome entry site (IRES) 結構。由於病毒本身核糖核酸基因體所能攜帶的遺傳信息有限,EV71 和其他小 RNA 科病毒會藉由利用宿主因子,稱為 IRES trans-acting factors (ITAFs),來協助進行 IRES-dependent 的轉譯作用。在此研究中,我們揭露了EV71的病毒蛋白酶 2A 能夠切割細胞蛋白質 far upstream element-binding protein 1 (FBP1) ; 先前研究已知此蛋白質能直接結合到EV71 五端非轉譯區的linker region中並藉此來促進 IRES-driven 的轉譯作用。在EV71感染過程中,FBP1 的 Gly-371 residue 會受到病毒蛋白酶2A的切割並因此產生一個具有功能的切割產物,FBP11-371。有趣的是,此切割產物 FBP11-371 能促進病毒的IRES活性。Footprinting 分析與凝膠遷移實驗顯示 FBP11-371 與 FBP1 相類似會結合到 EV71 五端非轉譯區的 linker region 但在確切的結合位點上與FBP1 卻不同。我們更進一步地發現當 FBP1與 FBP11-371同時結合到linker region時,能加成地促進 IRES-driven 的轉譯作用與成熟病毒顆粒的產量。我們的研究結果拓展了此領域對病毒-宿主相互作用、病毒如何利用與調控 ITAFs 的理解,同時對於病毒自身蛋白質轉譯作用上的調控提供了新的見解。
The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection.
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 iv
Abstract v
Table of Contents vi
Table of Figures viii
1. Introduction 1
1.1 Classification and Epidemiology 1
1.2 Virion structure 2
1.3 Genome organization 2
1.4 The internal ribosome entry site and cellular factors involved in viral translation 4
1.5 Viral RNA synthesis and RNA replication 6
1.6 Effects of viral proteinases on the host cells 8
1.5 Characterization of the cellular ITAF: Far upstream element-binding protein 1 (FBP1) 9
1.6 Objective of the study: The role of FBP1 and its cleavage products in EV71 replication 10
2. Materials and Methods 11
2.1 Infection of RD cells and cell lysate preparation 11
2.2 Plasmids and constructs 12
2.3 Expression and purification of recombinant proteins 15
2.4 Coupled transcription/translation of [35S] methionine-labeled proteins 16
2.5 In vitro proteinase cleavage assay 16
2.6 Immunoblot analysis 16
2.7 In vitro transcription 17
2.8 Pull-down assay for biotinylated EV71 5′ UTR RNA with streptavidin beads 18
2.9 Enzymatic RNA footprinting 19
2.10 In vitro translation assay 19
2.11 Lentiviral vector preparation 20
2.12 Gel mobility assays and preparation of labeled RNA probes 20
2.13 RNP immunoprecipitation 21
2.14 Reverse-phase liquid chromatography (RPLC) and mass spectrometry (MS) 22
2.15 Database searching for peptide identification 23
2.16 Reagents 24
2.17 Statistical analysis 24
3. Results 25
3.1 Cleavage of FBP1 during EV71 infection 25
3.2 FBP1 cleavage is independent of proteasome, lysosome, and caspase activities 26
3.3 Cleavage of FBP1 by EV71 viral proteinase 2A in vitro 27
3.4 Mapping the EV71 2Apro cleavage site in FBP1 29
3.5 Association of FBP1, FBP11-371 and EV71 5′ UTR RNA 31
3.6 FBP11-371 acts as an additive ITAF to enhance viral IRES activity 35
4. Discussion 38
5. References 44
6. Figures and Tables 58
Fig 1. Function, expression and subcellular localization of FBP1 in EV71-infected cells. 58
Fig 2. FBP1 cleavage following EV71 infection is independent of cellular proteasome, lysosome, or caspase activities. 60
Fig 3. In vitro induction of FBP1 cleavage by EV71 viral proteinase 2A. 61
Fig 4. Determining the EV71 2Apro primary cleavage site in FBP1.
63
Fig 5. Confirmation of FBP1 cleavage at Gly-371 by EV71 2Apro. 66
Fig 6. Association between FBP1, FBP11-371, and the EV71 5′ UTR. 68
Fig 7. Additive effects of FBP1 and FBP11-371 on IRES-driven translation. 69
Fig 8. Binding competition between FBP1, FBP11-371 and PTB to EV71 5′ UTR RNA and the effect of FBP1 and FBP11-371 on EMCV IRES-driven translation in vitro. 72
Fig 9. Proposed model for the functions of FBP1 and FBP1-371 in EV71 IRES-driven translation. 73
7. Appendix 74
Fig A.1 Confirmation of FBP1 cleavage site by in vitro cleavage assay and LC-MS/MS. 74
Fig A.2 Association of FBP1 and FBP11-371 with EV71 5′ UTR in in infected cells. 75
Fig A.3 Binding position of FBP1 and FBP11-371 within EV71 5′ UTR linker region RNA. 76


Table of Figures
Fig 1. Function, expression and subcellular localization of FBP1 in EV71-infected cells.
..........................................................................................................................................58
Fig 2. FBP1 cleavage following EV71 infection is independent of cellular proteasome,
lysosome, or caspase activities.........................................................................................60
Fig 3. In vitro induction of FBP1 cleavage by EV71 viral proteinase 2A. ......................61
Fig 4. Determining the EV71 2Apro primary cleavage site in FBP1. ...........................63
Fig 5. Confirmation of FBP1 cleavage at Gly-371 by EV71 2Apro..................................66
Fig 6. Association between FBP1, FBP11-371, and the EV71 5′ UTR. ..........................68
Fig 7. Additive effects of FBP1 and FBP11-371 on IRES-driven translation. ...................69
Fig 8. Binding competition between FBP1, FBP11-371 and PTB to EV71 5′ UTR RNA
and the effect of FBP1 and FBP11-371 on EMCV IRES-driven translation in vitro. ........72
Fig 9. Proposed model for the functions of FBP1 and FBP1-371 in EV71 IRES-driven
translation.........................................................................................................................73
1. Bedard KM, Semler BL. Regulation of picornavirus gene expression. Microbes Infect. 2004;6(7):702-13. Epub 2004/05/26. doi: 10.1016/j.micinf.2004.03.001. PubMed PMID: 15158778.
2. Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. The Journal of infectious diseases. 1974;129(3):304-9. Epub 1974/03/01. PubMed PMID: 4361245.
3. McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS microbiology reviews. 2002;26(1):91-107. Epub 2002/05/15. PubMed PMID: 12007645.
4. Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect. 2010;12(7):505-10. Epub 2010/03/30. doi: 10.1016/j.micinf.2010.03.006. PubMed PMID: 20348010.
5. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. The New England journal of medicine. 1999;341(13):929-35. Epub 1999/09/25. doi: 10.1056/NEJM199909233411301. PubMed PMID: 10498487.
6. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerging infectious diseases. 2003;9(1):78-85. Epub 2003/01/21. doi: 10.3201/eid0901.020112. PubMed PMID: 12533285; PubMed Central PMCID: PMC2873753.
7. Shimizu H, Utama A, Onnimala N, Li C, Li-Bi Z, Yu-Jie M, et al. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatrics international : official journal of the Japan Pediatric Society. 2004;46(2):231-5. Epub 2004/04/02. doi: 10.1046/j.1442-200x.2004.01868.x. PubMed PMID: 15056257.
8. Yang F, Ren L, Xiong Z, Li J, Xiao Y, Zhao R, et al. Enterovirus 71 outbreak in the People's Republic of China in 2008. Journal of clinical microbiology. 2009;47(7):2351-2. Epub 2009/05/15. doi: 10.1128/JCM.00563-09. PubMed PMID: 19439545; PubMed Central PMCID: PMC2708525.
9. Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, et al. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2009;44(4):262-7. Epub 2009/03/10. doi: 10.1016/j.jcv.2009.02.002. PubMed PMID: 19269888.
10. Jacobson SJ, Konings DA, Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993;67(6):2961-71. Epub 1993/06/01. PubMed PMID: 8388482; PubMed Central PMCID: PMC237632.
11. Lee YF, Nomoto A, Detjen BM, Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A. 1977;74(1):59-63. Epub 1977/01/01. PubMed PMID: 189316; PubMed Central PMCID: PMC393196.
12. Flanegan JB, Petterson RF, Ambros V, Hewlett NJ, Baltimore D. Covalent linkage of a protein to a defined nucleotide sequence at the 5'-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci U S A. 1977;74(3):961-5. Epub 1977/03/01. PubMed PMID: 191841; PubMed Central PMCID: PMC430548.
13. Barton DJ, O'Donnell BJ, Flanegan JB. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 2001;20(6):1439-48. Epub 2001/03/17. doi: 10.1093/emboj/20.6.1439. PubMed PMID: 11250909; PubMed Central PMCID: PMC145522.
14. Nomoto A, Detjen B, Pozzatti R, Wimmer E. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature. 1977;268(5617):208-13. Epub 1977/07/21. PubMed PMID: 196204.
15. Pettersson RF, Ambros V, Baltimore D. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol. 1978;27(2):357-65. Epub 1978/08/01. PubMed PMID: 211265; PubMed Central PMCID: PMC354174.
16. Nomoto A, Kitamura N, Golini F, Wimmer E. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A. 1977;74(12):5345-9. Epub 1977/12/01. PubMed PMID: 202952; PubMed Central PMCID: PMC431713.
17. Spector DH, Baltimore D. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A. 1974;71(8):2983-7. Epub 1974/08/01. PubMed PMID: 4370340; PubMed Central PMCID: PMC388603.
18. Sarnow P. Role of 3'-end sequences in infectivity of poliovirus transcripts made in vitro. J Virol. 1989;63(1):467-70. Epub 1989/01/01. PubMed PMID: 2535751; PubMed Central PMCID: PMC247710.
19. Wimmer E, Hellen CU, Cao X. Genetics of poliovirus. Annu Rev Genet. 1993;27:353-436. Epub 1993/01/01. doi: 10.1146/annurev.ge.27.120193.002033. PubMed PMID: 8122908.
20. Summers DF, Maizel JV, Jr. Evidence for large precursor proteins in poliovirus synthesis. Proc Natl Acad Sci U S A. 1968;59(3):966-71. Epub 1968/03/01. PubMed PMID: 4296044; PubMed Central PMCID: PMC224791.
21. Semler BL, wimmer A. Processing determinants and functions of cleavage products of picornavirus polyproteins. 2002;Molecular Biology of Picornaviruses.
22. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15(7):794-7. Epub 2009/06/23. doi: nm.1961 [pii]
10.1038/nm.1961. PubMed PMID: 19543284.
23. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15(7):798-801. Epub 2009/06/23. doi: nm.1992 [pii]
10.1038/nm.1992. PubMed PMID: 19543282.
24. Thompson SR, Sarnow P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology. 2003;315(1):259-66. Epub 2003/11/01. PubMed PMID: 14592777.
25. Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochimica et biophysica acta. 2009;1789(9-10):518-28. Epub 2009/07/28. doi: 10.1016/j.bbagrm.2009.07.004. PubMed PMID: 19631772; PubMed Central PMCID: PMC2783899.
26. Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15(13):1593-612. Epub 2001/07/11. doi: 10.1101/gad.891101. PubMed PMID: 11445534.
27. Haghighat A, Svitkin Y, Novoa I, Kuechler E, Skern T, Sonenberg N. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol. 1996;70(12):8444-50. Epub 1996/12/01. PubMed PMID: 8970966; PubMed Central PMCID: PMC190934.
28. Gradi A, Svitkin YV, Imataka H, Sonenberg N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A. 1998;95(19):11089-94. Epub 1998/09/16. PubMed PMID: 9736694; PubMed Central PMCID: PMC21600.
29. Ohlmann T, Rau M, Morley SJ, Pain VM. Proteolytic cleavage of initiation factor eIF-4 gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucleic acids research. 1995;23(3):334-40. Epub 1995/02/11. PubMed PMID: 7885827; PubMed Central PMCID: PMC306680.
30. Hellen CU, Witherell GW, Schmid M, Shin SH, Pestova TV, Gil A, et al. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993;90(16):7642-6. Epub 1993/08/15. PubMed PMID: 8395052; PubMed Central PMCID: PMC47198.
31. Jang SK, Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 1990;4(9):1560-72. Epub 1990/09/01. PubMed PMID: 2174810.
32. Walter BL, Parsley TB, Ehrenfeld E, Semler BL. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J Virol. 2002;76(23):12008-22. Epub 2002/11/05. PubMed PMID: 12414943; PubMed Central PMCID: PMC136902.
33. Blyn LB, Towner JS, Semler BL, Ehrenfeld E. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol. 1997;71(8):6243-6. Epub 1997/08/01. PubMed PMID: 9223526; PubMed Central PMCID: PMC191892.
34. Blyn LB, Swiderek KM, Richards O, Stahl DC, Semler BL, Ehrenfeld E. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc Natl Acad Sci U S A. 1996;93(20):11115-20. Epub 1996/10/01. PubMed PMID: 8855318; PubMed Central PMCID: PMC38293.
35. Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol. 2013;87(19):10423-34. Epub 2013/08/02. doi: 10.1128/JVI.01049-13. PubMed PMID: 23903828; PubMed Central PMCID: PMC3807403.
36. Huang PN, Lin JY, Locker N, Kung YA, Hung CT, Lin JY, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic acids research. 2011;39(22):9633-48. Epub 2011/09/02. doi: 10.1093/nar/gkr682. PubMed PMID: 21880596; PubMed Central PMCID: PMC3239202.
37. Lin JY, Li ML, Shih SR. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic acids research. 2009;37(1):47-59. Epub 2008/11/18. doi: 10.1093/nar/gkn901. PubMed PMID: 19010963; PubMed Central PMCID: PMC2615614.
38. Shih SR, Stollar V, Li ML. Host factors in enterovirus 71 replication. J Virol. 2011;85(19):9658-66. Epub 2011/07/01. doi: 10.1128/JVI.05063-11. PubMed PMID: 21715481; PubMed Central PMCID: PMC3196451.
39. Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Frontiers in microbiology. 2015;6:594. Epub 2015/07/08. doi: 10.3389/fmicb.2015.00594. PubMed PMID: 26150805; PubMed Central PMCID: PMC4471892.
40. Kok CC, McMinn PC. Picornavirus RNA-dependent RNA polymerase. The international journal of biochemistry & cell biology. 2009;41(3):498-502. Epub 2008/05/20. doi: 10.1016/j.biocel.2008.03.019. PubMed PMID: 18487072.
41. Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, Wimmer E. Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol. 2003;77(2):891-904. Epub 2002/12/28. PubMed PMID: 12502805; PubMed Central PMCID: PMC140777.
42. Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol. 2000;74(22):10359-70. Epub 2000/10/24. PubMed PMID: 11044080; PubMed Central PMCID: PMC110910.
43. Nagy PD, Pogany J. The dependence of viral RNA replication on co-opted host factors. Nature reviews Microbiology. 2011;10(2):137-49. Epub 2011/12/21. doi: 10.1038/nrmicro2692. PubMed PMID: 22183253.
44. Salonen A, Ahola T, Kaariainen L. Viral RNA replication in association with cellular membranes. Current topics in microbiology and immunology. 2005;285:139-73. Epub 2004/12/22. PubMed PMID: 15609503.
45. Egger D, Teterina N, Ehrenfeld E, Bienz K. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol. 2000;74(14):6570-80. Epub 2000/06/23. PubMed PMID: 10864671; PubMed Central PMCID: PMC112167.
46. Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. The Journal of biological chemistry. 1982;257(24):14806-10. Epub 1982/12/25. PubMed PMID: 6294080.
47. Joachims M, Van Breugel PC, Lloyd RE. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol. 1999;73(1):718-27. Epub 1998/12/16. PubMed PMID: 9847378; PubMed Central PMCID: PMC103879.
48. Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE. Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol. 1999;73(1):709-17. Epub 1998/12/16. PubMed PMID: 9847377; PubMed Central PMCID: PMC103878.
49. Kuyumcu-Martinez NM, Van Eden ME, Younan P, Lloyd RE. Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Molecular and cellular biology. 2004;24(4):1779-90. Epub 2004/01/30. PubMed PMID: 14749392; PubMed Central PMCID: PMC344173.
50. Weng KF, Li ML, Hung CT, Shih SR. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS pathogens. 2009;5(9):e1000593. Epub 2009/09/26. doi: 10.1371/journal.ppat.1000593. PubMed PMID: 19779565; PubMed Central PMCID: PMC2742901.
51. Clark ME, Lieberman PM, Berk AJ, Dasgupta A. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Molecular and cellular biology. 1993;13(2):1232-7. Epub 1993/02/01. PubMed PMID: 8380894; PubMed Central PMCID: PMC359008.
52. Yalamanchili P, Datta U, Dasgupta A. Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol. 1997;71(2):1220-6. Epub 1997/02/01. PubMed PMID: 8995645; PubMed Central PMCID: PMC191176.
53. Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim JE, et al. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol. 2002;76(5):2529-42. Epub 2002/02/12. PubMed PMID: 11836431; PubMed Central PMCID: PMC135932.
54. Perera R, Daijogo S, Walter BL, Nguyen JH, Semler BL. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J Virol. 2007;81(17):8919-32. Epub 2007/06/22. doi: 10.1128/JVI.01013-07. PubMed PMID: 17581994; PubMed Central PMCID: PMC1951425.
55. Valverde R, Edwards L, Regan L. Structure and function of KH domains. The FEBS journal. 2008;275(11):2712-26. Epub 2008/04/22. doi: 10.1111/j.1742-4658.2008.06411.x. PubMed PMID: 18422648.
56. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8(4):465-80. Epub 1994/02/15. PubMed PMID: 8125259.
57. Duncan R, Collins I, Tomonaga T, Zhang T, Levens D. A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP. Molecular and cellular biology. 1996;16(5):2274-82. Epub 1996/05/01. PubMed PMID: 8628294; PubMed Central PMCID: PMC231215.
58. He L, Liu J, Collins I, Sanford S, O'Connell B, Benham CJ, et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 2000;19(5):1034-44. Epub 2000/03/04. doi: 10.1093/emboj/19.5.1034. PubMed PMID: 10698944; PubMed Central PMCID: PMC305642.
59. Irwin N, Baekelandt V, Goritchenko L, Benowitz LI. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Nucleic acids research. 1997;25(6):1281-8. Epub 1997/03/15. PubMed PMID: 9092640; PubMed Central PMCID: PMC146556.
60. Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene. 2011;30(1):77-86. Epub 2010/08/31. doi: 10.1038/onc.2010.404. PubMed PMID: 20802533; PubMed Central PMCID: PMC3190308.
61. Zheng Y, Miskimins WK. Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. The international journal of biochemistry & cell biology. 2011;43(11):1641-8. Epub 2011/08/23. doi: 10.1016/j.biocel.2011.08.001. PubMed PMID: 21855647; PubMed Central PMCID: PMC3206725.
62. Zhang Z, Harris D, Pandey VN. The FUSE binding protein is a cellular factor required for efficient replication of hepatitis C virus. J Virol. 2008;82(12):5761-73. Epub 2008/04/11. doi: 10.1128/JVI.00064-08. PubMed PMID: 18400844; PubMed Central PMCID: PMC2395142.
63. Chien HL, Liao CL, Lin YL. FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol. 2011;85(10):4698-706. Epub 2011/03/04. doi: 10.1128/JVI.01950-10. PubMed PMID: 21367899; PubMed Central PMCID: PMC3126168.
64. Chen LL, Kung YA, Weng KF, Lin JY, Horng JT, Shih SR. Enterovirus 71 infection cleaves a negative regulator for viral internal ribosomal entry site-driven translation. J Virol. 2013;87(7):3828-38. Epub 2013/01/25. doi: 10.1128/JVI.02278-12. PubMed PMID: 23345520; PubMed Central PMCID: PMC3624201.
65. Li ML, Ramirez BC, Krug RM. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 1998;17(19):5844-52. Epub 1998/10/02. doi: 10.1093/emboj/17.19.5844. PubMed PMID: 9755184; PubMed Central PMCID: PMC1170912.
66. Jang M, Park BC, Kang S, Chi SW, Cho S, Chung SJ, et al. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene. 2009;28(12):1529-36. Epub 2009/02/17. doi: 10.1038/onc.2009.11. PubMed PMID: 19219071.
67. Chang SC, Lin JY, Lo LY, Li ML, Shih SR. Diverse apoptotic pathways in enterovirus 71-infected cells. Journal of neurovirology. 2004;10(6):338-49. Epub 2005/03/16. doi: 10.1080/13550280490521032. PubMed PMID: 15765805.
68. Shih SR, Weng KF, Stollar V, Li ML. Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells. Journal of neurovirology. 2008;14(1):53-61. Epub 2008/02/27. doi: 10.1080/13550280701798980. PubMed PMID: 18300075.
69. Blom N, Hansen J, Blaas D, Brunak S. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein science : a publication of the Protein Society. 1996;5(11):2203-16. Epub 1996/11/01. doi: 10.1002/pro.5560051107. PubMed PMID: 8931139; PubMed Central PMCID: PMC2143287.
70. Hellen CU, Lee CK, Wimmer E. Determinants of substrate recognition by poliovirus 2A proteinase. J Virol. 1992;66(6):3330-8. Epub 1992/06/01. PubMed PMID: 1316450; PubMed Central PMCID: PMC241111.
71. Sommergruber W, Ahorn H, Zophel A, Maurer-Fogy I, Fessl F, Schnorrenberg G, et al. Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. The Journal of biological chemistry. 1992;267(31):22639-44. Epub 1992/11/05. PubMed PMID: 1331062.
72. Gustin KE, Sarnow P. Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J. 2001;20(1-2):240-9. Epub 2001/02/28. doi: 10.1093/emboj/20.1.240. PubMed PMID: 11226174; PubMed Central PMCID: PMC140206.
73. Gustin KE. Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. Virus research. 2003;95(1-2):35-44. Epub 2003/08/19. PubMed PMID: 12921994.
74. Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, et al. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol. 2004;78(18):10166-77. Epub 2004/08/28. doi: 10.1128/JVI.78.18.10166-10177.2004. PubMed PMID: 15331749; PubMed Central PMCID: PMC514989.
75. Park N, Katikaneni P, Skern T, Gustin KE. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol. 2008;82(4):1647-55. Epub 2007/11/30. doi: 10.1128/JVI.01670-07. PubMed PMID: 18045934; PubMed Central PMCID: PMC2258732.
76. Park N, Skern T, Gustin KE. Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. The Journal of biological chemistry. 2010;285(37):28796-805. Epub 2010/07/14. doi: 10.1074/jbc.M110.143404. PubMed PMID: 20622012; PubMed Central PMCID: PMC2937907.
77. Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, et al. MDA-5 is cleaved in poliovirus-infected cells. J Virol. 2007;81(8):3677-84. Epub 2007/02/03. doi: 10.1128/JVI.01360-06. PubMed PMID: 17267501; PubMed Central PMCID: PMC1866155.
78. Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, et al. Picornavirus modification of a host mRNA decay protein. mBio. 2012;3(6):e00431-12. Epub 2012/11/08. doi: 10.1128/mBio.00431-12. PubMed PMID: 23131833; PubMed Central PMCID: PMC3487778.
79. Kafasla P, Morgner N, Robinson CV, Jackson RJ. Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J. 2010;29(21):3710-22. Epub 2010/09/23. doi: 10.1038/emboj.2010.231. PubMed PMID: 20859255; PubMed Central PMCID: PMC2982756.
80. Chase AJ, Daijogo S, Semler BL. Inhibition of poliovirus-induced cleavage of cellular protein PCBP2 reduces the levels of viral RNA replication. J Virol. 2014;88(6):3192-201. Epub 2013/12/29. doi: 10.1128/JVI.02503-13. PubMed PMID: 24371074; PubMed Central PMCID: PMC3957957.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top