|
1. Bedard KM, Semler BL. Regulation of picornavirus gene expression. Microbes Infect. 2004;6(7):702-13. Epub 2004/05/26. doi: 10.1016/j.micinf.2004.03.001. PubMed PMID: 15158778. 2. Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. The Journal of infectious diseases. 1974;129(3):304-9. Epub 1974/03/01. PubMed PMID: 4361245. 3. McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS microbiology reviews. 2002;26(1):91-107. Epub 2002/05/15. PubMed PMID: 12007645. 4. Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect. 2010;12(7):505-10. Epub 2010/03/30. doi: 10.1016/j.micinf.2010.03.006. PubMed PMID: 20348010. 5. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. The New England journal of medicine. 1999;341(13):929-35. Epub 1999/09/25. doi: 10.1056/NEJM199909233411301. PubMed PMID: 10498487. 6. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerging infectious diseases. 2003;9(1):78-85. Epub 2003/01/21. doi: 10.3201/eid0901.020112. PubMed PMID: 12533285; PubMed Central PMCID: PMC2873753. 7. Shimizu H, Utama A, Onnimala N, Li C, Li-Bi Z, Yu-Jie M, et al. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatrics international : official journal of the Japan Pediatric Society. 2004;46(2):231-5. Epub 2004/04/02. doi: 10.1046/j.1442-200x.2004.01868.x. PubMed PMID: 15056257. 8. Yang F, Ren L, Xiong Z, Li J, Xiao Y, Zhao R, et al. Enterovirus 71 outbreak in the People's Republic of China in 2008. Journal of clinical microbiology. 2009;47(7):2351-2. Epub 2009/05/15. doi: 10.1128/JCM.00563-09. PubMed PMID: 19439545; PubMed Central PMCID: PMC2708525. 9. Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, et al. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2009;44(4):262-7. Epub 2009/03/10. doi: 10.1016/j.jcv.2009.02.002. PubMed PMID: 19269888. 10. Jacobson SJ, Konings DA, Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993;67(6):2961-71. Epub 1993/06/01. PubMed PMID: 8388482; PubMed Central PMCID: PMC237632. 11. Lee YF, Nomoto A, Detjen BM, Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A. 1977;74(1):59-63. Epub 1977/01/01. PubMed PMID: 189316; PubMed Central PMCID: PMC393196. 12. Flanegan JB, Petterson RF, Ambros V, Hewlett NJ, Baltimore D. Covalent linkage of a protein to a defined nucleotide sequence at the 5'-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci U S A. 1977;74(3):961-5. Epub 1977/03/01. PubMed PMID: 191841; PubMed Central PMCID: PMC430548. 13. Barton DJ, O'Donnell BJ, Flanegan JB. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 2001;20(6):1439-48. Epub 2001/03/17. doi: 10.1093/emboj/20.6.1439. PubMed PMID: 11250909; PubMed Central PMCID: PMC145522. 14. Nomoto A, Detjen B, Pozzatti R, Wimmer E. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature. 1977;268(5617):208-13. Epub 1977/07/21. PubMed PMID: 196204. 15. Pettersson RF, Ambros V, Baltimore D. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol. 1978;27(2):357-65. Epub 1978/08/01. PubMed PMID: 211265; PubMed Central PMCID: PMC354174. 16. Nomoto A, Kitamura N, Golini F, Wimmer E. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A. 1977;74(12):5345-9. Epub 1977/12/01. PubMed PMID: 202952; PubMed Central PMCID: PMC431713. 17. Spector DH, Baltimore D. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc Natl Acad Sci U S A. 1974;71(8):2983-7. Epub 1974/08/01. PubMed PMID: 4370340; PubMed Central PMCID: PMC388603. 18. Sarnow P. Role of 3'-end sequences in infectivity of poliovirus transcripts made in vitro. J Virol. 1989;63(1):467-70. Epub 1989/01/01. PubMed PMID: 2535751; PubMed Central PMCID: PMC247710. 19. Wimmer E, Hellen CU, Cao X. Genetics of poliovirus. Annu Rev Genet. 1993;27:353-436. Epub 1993/01/01. doi: 10.1146/annurev.ge.27.120193.002033. PubMed PMID: 8122908. 20. Summers DF, Maizel JV, Jr. Evidence for large precursor proteins in poliovirus synthesis. Proc Natl Acad Sci U S A. 1968;59(3):966-71. Epub 1968/03/01. PubMed PMID: 4296044; PubMed Central PMCID: PMC224791. 21. Semler BL, wimmer A. Processing determinants and functions of cleavage products of picornavirus polyproteins. 2002;Molecular Biology of Picornaviruses. 22. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15(7):794-7. Epub 2009/06/23. doi: nm.1961 [pii] 10.1038/nm.1961. PubMed PMID: 19543284. 23. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15(7):798-801. Epub 2009/06/23. doi: nm.1992 [pii] 10.1038/nm.1992. PubMed PMID: 19543282. 24. Thompson SR, Sarnow P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology. 2003;315(1):259-66. Epub 2003/11/01. PubMed PMID: 14592777. 25. Fitzgerald KD, Semler BL. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochimica et biophysica acta. 2009;1789(9-10):518-28. Epub 2009/07/28. doi: 10.1016/j.bbagrm.2009.07.004. PubMed PMID: 19631772; PubMed Central PMCID: PMC2783899. 26. Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15(13):1593-612. Epub 2001/07/11. doi: 10.1101/gad.891101. PubMed PMID: 11445534. 27. Haghighat A, Svitkin Y, Novoa I, Kuechler E, Skern T, Sonenberg N. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol. 1996;70(12):8444-50. Epub 1996/12/01. PubMed PMID: 8970966; PubMed Central PMCID: PMC190934. 28. Gradi A, Svitkin YV, Imataka H, Sonenberg N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A. 1998;95(19):11089-94. Epub 1998/09/16. PubMed PMID: 9736694; PubMed Central PMCID: PMC21600. 29. Ohlmann T, Rau M, Morley SJ, Pain VM. Proteolytic cleavage of initiation factor eIF-4 gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucleic acids research. 1995;23(3):334-40. Epub 1995/02/11. PubMed PMID: 7885827; PubMed Central PMCID: PMC306680. 30. Hellen CU, Witherell GW, Schmid M, Shin SH, Pestova TV, Gil A, et al. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993;90(16):7642-6. Epub 1993/08/15. PubMed PMID: 8395052; PubMed Central PMCID: PMC47198. 31. Jang SK, Wimmer E. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 1990;4(9):1560-72. Epub 1990/09/01. PubMed PMID: 2174810. 32. Walter BL, Parsley TB, Ehrenfeld E, Semler BL. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J Virol. 2002;76(23):12008-22. Epub 2002/11/05. PubMed PMID: 12414943; PubMed Central PMCID: PMC136902. 33. Blyn LB, Towner JS, Semler BL, Ehrenfeld E. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol. 1997;71(8):6243-6. Epub 1997/08/01. PubMed PMID: 9223526; PubMed Central PMCID: PMC191892. 34. Blyn LB, Swiderek KM, Richards O, Stahl DC, Semler BL, Ehrenfeld E. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc Natl Acad Sci U S A. 1996;93(20):11115-20. Epub 1996/10/01. PubMed PMID: 8855318; PubMed Central PMCID: PMC38293. 35. Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol. 2013;87(19):10423-34. Epub 2013/08/02. doi: 10.1128/JVI.01049-13. PubMed PMID: 23903828; PubMed Central PMCID: PMC3807403. 36. Huang PN, Lin JY, Locker N, Kung YA, Hung CT, Lin JY, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic acids research. 2011;39(22):9633-48. Epub 2011/09/02. doi: 10.1093/nar/gkr682. PubMed PMID: 21880596; PubMed Central PMCID: PMC3239202. 37. Lin JY, Li ML, Shih SR. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic acids research. 2009;37(1):47-59. Epub 2008/11/18. doi: 10.1093/nar/gkn901. PubMed PMID: 19010963; PubMed Central PMCID: PMC2615614. 38. Shih SR, Stollar V, Li ML. Host factors in enterovirus 71 replication. J Virol. 2011;85(19):9658-66. Epub 2011/07/01. doi: 10.1128/JVI.05063-11. PubMed PMID: 21715481; PubMed Central PMCID: PMC3196451. 39. Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Frontiers in microbiology. 2015;6:594. Epub 2015/07/08. doi: 10.3389/fmicb.2015.00594. PubMed PMID: 26150805; PubMed Central PMCID: PMC4471892. 40. Kok CC, McMinn PC. Picornavirus RNA-dependent RNA polymerase. The international journal of biochemistry & cell biology. 2009;41(3):498-502. Epub 2008/05/20. doi: 10.1016/j.biocel.2008.03.019. PubMed PMID: 18487072. 41. Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, Wimmer E. Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol. 2003;77(2):891-904. Epub 2002/12/28. PubMed PMID: 12502805; PubMed Central PMCID: PMC140777. 42. Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol. 2000;74(22):10359-70. Epub 2000/10/24. PubMed PMID: 11044080; PubMed Central PMCID: PMC110910. 43. Nagy PD, Pogany J. The dependence of viral RNA replication on co-opted host factors. Nature reviews Microbiology. 2011;10(2):137-49. Epub 2011/12/21. doi: 10.1038/nrmicro2692. PubMed PMID: 22183253. 44. Salonen A, Ahola T, Kaariainen L. Viral RNA replication in association with cellular membranes. Current topics in microbiology and immunology. 2005;285:139-73. Epub 2004/12/22. PubMed PMID: 15609503. 45. Egger D, Teterina N, Ehrenfeld E, Bienz K. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol. 2000;74(14):6570-80. Epub 2000/06/23. PubMed PMID: 10864671; PubMed Central PMCID: PMC112167. 46. Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. The Journal of biological chemistry. 1982;257(24):14806-10. Epub 1982/12/25. PubMed PMID: 6294080. 47. Joachims M, Van Breugel PC, Lloyd RE. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol. 1999;73(1):718-27. Epub 1998/12/16. PubMed PMID: 9847378; PubMed Central PMCID: PMC103879. 48. Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE. Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol. 1999;73(1):709-17. Epub 1998/12/16. PubMed PMID: 9847377; PubMed Central PMCID: PMC103878. 49. Kuyumcu-Martinez NM, Van Eden ME, Younan P, Lloyd RE. Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Molecular and cellular biology. 2004;24(4):1779-90. Epub 2004/01/30. PubMed PMID: 14749392; PubMed Central PMCID: PMC344173. 50. Weng KF, Li ML, Hung CT, Shih SR. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation. PLoS pathogens. 2009;5(9):e1000593. Epub 2009/09/26. doi: 10.1371/journal.ppat.1000593. PubMed PMID: 19779565; PubMed Central PMCID: PMC2742901. 51. Clark ME, Lieberman PM, Berk AJ, Dasgupta A. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Molecular and cellular biology. 1993;13(2):1232-7. Epub 1993/02/01. PubMed PMID: 8380894; PubMed Central PMCID: PMC359008. 52. Yalamanchili P, Datta U, Dasgupta A. Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J Virol. 1997;71(2):1220-6. Epub 1997/02/01. PubMed PMID: 8995645; PubMed Central PMCID: PMC191176. 53. Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim JE, et al. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol. 2002;76(5):2529-42. Epub 2002/02/12. PubMed PMID: 11836431; PubMed Central PMCID: PMC135932. 54. Perera R, Daijogo S, Walter BL, Nguyen JH, Semler BL. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J Virol. 2007;81(17):8919-32. Epub 2007/06/22. doi: 10.1128/JVI.01013-07. PubMed PMID: 17581994; PubMed Central PMCID: PMC1951425. 55. Valverde R, Edwards L, Regan L. Structure and function of KH domains. The FEBS journal. 2008;275(11):2712-26. Epub 2008/04/22. doi: 10.1111/j.1742-4658.2008.06411.x. PubMed PMID: 18422648. 56. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8(4):465-80. Epub 1994/02/15. PubMed PMID: 8125259. 57. Duncan R, Collins I, Tomonaga T, Zhang T, Levens D. A unique transactivation sequence motif is found in the carboxyl-terminal domain of the single-strand-binding protein FBP. Molecular and cellular biology. 1996;16(5):2274-82. Epub 1996/05/01. PubMed PMID: 8628294; PubMed Central PMCID: PMC231215. 58. He L, Liu J, Collins I, Sanford S, O'Connell B, Benham CJ, et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 2000;19(5):1034-44. Epub 2000/03/04. doi: 10.1093/emboj/19.5.1034. PubMed PMID: 10698944; PubMed Central PMCID: PMC305642. 59. Irwin N, Baekelandt V, Goritchenko L, Benowitz LI. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Nucleic acids research. 1997;25(6):1281-8. Epub 1997/03/15. PubMed PMID: 9092640; PubMed Central PMCID: PMC146556. 60. Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD. Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene. 2011;30(1):77-86. Epub 2010/08/31. doi: 10.1038/onc.2010.404. PubMed PMID: 20802533; PubMed Central PMCID: PMC3190308. 61. Zheng Y, Miskimins WK. Far upstream element binding protein 1 activates translation of p27Kip1 mRNA through its internal ribosomal entry site. The international journal of biochemistry & cell biology. 2011;43(11):1641-8. Epub 2011/08/23. doi: 10.1016/j.biocel.2011.08.001. PubMed PMID: 21855647; PubMed Central PMCID: PMC3206725. 62. Zhang Z, Harris D, Pandey VN. The FUSE binding protein is a cellular factor required for efficient replication of hepatitis C virus. J Virol. 2008;82(12):5761-73. Epub 2008/04/11. doi: 10.1128/JVI.00064-08. PubMed PMID: 18400844; PubMed Central PMCID: PMC2395142. 63. Chien HL, Liao CL, Lin YL. FUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication. J Virol. 2011;85(10):4698-706. Epub 2011/03/04. doi: 10.1128/JVI.01950-10. PubMed PMID: 21367899; PubMed Central PMCID: PMC3126168. 64. Chen LL, Kung YA, Weng KF, Lin JY, Horng JT, Shih SR. Enterovirus 71 infection cleaves a negative regulator for viral internal ribosomal entry site-driven translation. J Virol. 2013;87(7):3828-38. Epub 2013/01/25. doi: 10.1128/JVI.02278-12. PubMed PMID: 23345520; PubMed Central PMCID: PMC3624201. 65. Li ML, Ramirez BC, Krug RM. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 1998;17(19):5844-52. Epub 1998/10/02. doi: 10.1093/emboj/17.19.5844. PubMed PMID: 9755184; PubMed Central PMCID: PMC1170912. 66. Jang M, Park BC, Kang S, Chi SW, Cho S, Chung SJ, et al. Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene. 2009;28(12):1529-36. Epub 2009/02/17. doi: 10.1038/onc.2009.11. PubMed PMID: 19219071. 67. Chang SC, Lin JY, Lo LY, Li ML, Shih SR. Diverse apoptotic pathways in enterovirus 71-infected cells. Journal of neurovirology. 2004;10(6):338-49. Epub 2005/03/16. doi: 10.1080/13550280490521032. PubMed PMID: 15765805. 68. Shih SR, Weng KF, Stollar V, Li ML. Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells. Journal of neurovirology. 2008;14(1):53-61. Epub 2008/02/27. doi: 10.1080/13550280701798980. PubMed PMID: 18300075. 69. Blom N, Hansen J, Blaas D, Brunak S. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein science : a publication of the Protein Society. 1996;5(11):2203-16. Epub 1996/11/01. doi: 10.1002/pro.5560051107. PubMed PMID: 8931139; PubMed Central PMCID: PMC2143287. 70. Hellen CU, Lee CK, Wimmer E. Determinants of substrate recognition by poliovirus 2A proteinase. J Virol. 1992;66(6):3330-8. Epub 1992/06/01. PubMed PMID: 1316450; PubMed Central PMCID: PMC241111. 71. Sommergruber W, Ahorn H, Zophel A, Maurer-Fogy I, Fessl F, Schnorrenberg G, et al. Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. The Journal of biological chemistry. 1992;267(31):22639-44. Epub 1992/11/05. PubMed PMID: 1331062. 72. Gustin KE, Sarnow P. Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J. 2001;20(1-2):240-9. Epub 2001/02/28. doi: 10.1093/emboj/20.1.240. PubMed PMID: 11226174; PubMed Central PMCID: PMC140206. 73. Gustin KE. Inhibition of nucleo-cytoplasmic trafficking by RNA viruses: targeting the nuclear pore complex. Virus research. 2003;95(1-2):35-44. Epub 2003/08/19. PubMed PMID: 12921994. 74. Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, et al. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol. 2004;78(18):10166-77. Epub 2004/08/28. doi: 10.1128/JVI.78.18.10166-10177.2004. PubMed PMID: 15331749; PubMed Central PMCID: PMC514989. 75. Park N, Katikaneni P, Skern T, Gustin KE. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol. 2008;82(4):1647-55. Epub 2007/11/30. doi: 10.1128/JVI.01670-07. PubMed PMID: 18045934; PubMed Central PMCID: PMC2258732. 76. Park N, Skern T, Gustin KE. Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. The Journal of biological chemistry. 2010;285(37):28796-805. Epub 2010/07/14. doi: 10.1074/jbc.M110.143404. PubMed PMID: 20622012; PubMed Central PMCID: PMC2937907. 77. Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, et al. MDA-5 is cleaved in poliovirus-infected cells. J Virol. 2007;81(8):3677-84. Epub 2007/02/03. doi: 10.1128/JVI.01360-06. PubMed PMID: 17267501; PubMed Central PMCID: PMC1866155. 78. Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, et al. Picornavirus modification of a host mRNA decay protein. mBio. 2012;3(6):e00431-12. Epub 2012/11/08. doi: 10.1128/mBio.00431-12. PubMed PMID: 23131833; PubMed Central PMCID: PMC3487778. 79. Kafasla P, Morgner N, Robinson CV, Jackson RJ. Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J. 2010;29(21):3710-22. Epub 2010/09/23. doi: 10.1038/emboj.2010.231. PubMed PMID: 20859255; PubMed Central PMCID: PMC2982756. 80. Chase AJ, Daijogo S, Semler BL. Inhibition of poliovirus-induced cleavage of cellular protein PCBP2 reduces the levels of viral RNA replication. J Virol. 2014;88(6):3192-201. Epub 2013/12/29. doi: 10.1128/JVI.02503-13. PubMed PMID: 24371074; PubMed Central PMCID: PMC3957957.
|