跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方絜
研究生(外文):Chieh Fang
論文名稱:探討天門冬胺酸胺醯基化tRNA合成酶在非小細胞肺癌癌化過程中所扮演的角色
論文名稱(外文):Study the role of asparaginyl-tRNA synthetase in non-small cell lung cancer progression
指導教授:游佳融
指導教授(外文):C. J. Yu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:120
中文關鍵詞:肺腺癌天門冬胺酸胺醯基化tRNA合成酶腫瘤轉移細胞週期
外文關鍵詞:NARSMigrationADCMetastasisCell cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
先前本實驗室透過肺癌組織定量蛋白體平台發現天門冬胺酸胺醯基化 tRNA 合成酶 (asparaginyl-tRNA synthetase, NARS) 的表現量與非小細胞肺癌之轉移具有高度關聯性。因此想進一步探討 NARS 在非小細胞肺癌癌化過程中所扮演的角色。透過實驗發現在 CL1-0 、 CL1-5 及 H1299肺腺癌細胞株中將 NARS 基因弱化後,細胞的爬行及侵襲能力顯著地下降,然而在另一株 A549 肺腺癌細胞株中卻得到相反的結果。同時我們在細胞生長能力的分析中觀察到將 NARS 基因弱化後,肺腺癌細胞株生長顯著地受到抑制。進一步以流式細胞儀分析發現將 NARS 基因弱化會使 A549 的細胞生長週期會產生延遲以及G1 arrest的現象 。我們也觀察到 NARS 基因弱化後 A549 細胞株中的pAkt 與 pERK 會明顯上升,而在 CL1-5 中的 pAkt 則明顯下降。因此推測在不同的細胞株中 NARS 會透過不同機制調控細胞的爬行與侵襲能力。此外,在 CL1-0 細胞株中利用免疫沈澱法結合質譜儀鑑定到 NARS 交互作用候選蛋白質 HSPA9,並在 CL1-0 、 CL1-5 細胞株中驗證了 NARS 與 HSPA9 的交互作用。最後利用 SILAC 定量蛋白質體策略分析 NARS 基因的弱化後差異性蛋白質的表現,發現 NARS 基因的弱化影響了與細胞骨架以及細胞黏附相關的信息傳遞路徑分子。綜合以上結果,我們推測 NARS 確實參與在肺腺癌細胞轉移以及細胞週期的調控中。
In higher eukaryotic aminoacyl tRNA synthetase (AARs) have been implicated in a variety of noncanonical functions. Previously we identified NARS (asparaginyl-tRNA synthetase) as a potential biomarker for lung adenocarcinoma (ADC) and its overexpression was positively associated with lymph node metastasis in ADC cells. In this study, we found that NARS knockdown reduced the viability, migration and invasion abilities in H1299, CL1-0 and CL1-5 cells but a reverted phenomenon was shown in A549 cells. The growth ability was suppressed in NARS knockdown of ADC cells. Moreover, knockdown of NARS in A549 cells caused the cell cycle arrested in the G1 phase. Knockdown of NARS induced increasing levels of pAkt and pERK in A549 cells, but caused a reduction of pAkt level in CL1-5 cells. We proposed that NARS executes its non-canonical function through protein complex formation, and we identified and verified HSPA9 as an interaction partner of NARS by co-immunoprecipitation combined with GeLC-MS/MS in CL1-0 and CL1-5 cell lines. We also applied stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomic strategy combined with NARS knockdown in CL1-5 cells and revealed that NARS protein was involved in cell adhesion cell-matrix interactions and cytoskeleton actin filaments network. Our results collectively suggest that NARS is involved in lung cancer metastasis and regulation of the cell cycle and may though distinct pathway in different ADC cell lines.
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 iv
英文摘要 vi
目錄 vii
表目錄 xiii
圖目錄 xiv
附錄 xvii

第一章 緒論
1.1. 肺癌 (Lung cancer) 1
1.2. 胺醯基化 tRNA 合成酶家族 (Aminoacyl-tRNAsynthetase, ARS) 2
1.3. 天門冬胺酸胺醯基化 tRNA 合成酶 (Asparaginyl-tRNA synthetase, NARS) 7
1.4. 天門冬胺酸胺醯基化 tRNA 合成酶與肺癌的關係 8

第二章 研究目的與策略 9
2.1. 研究目的 9
2.2. 研究目標與策略10

第三章 實驗材料與方法12
3.1. 細胞培養 (Cell culture) 12
3.2. 基因弱化 (Gene knockdown) 13
3.3. 細胞表現質體構築 (Cloning) 14
3.4. 細胞轉染 (Transfection) 19
3.5. 免疫螢光分析 (immunofluorescence assay) 19
3.6. 蛋白質萃取 (Protein extraction) 20
3.7. 蛋白質絕對定量 (Protein Quantitation) 20
3.8. 西方墨點法 (Western blot) 21
3.9. 細胞爬行試驗 (Migration assay) 22
3.10.細胞侵襲試驗 (Invasion assay) 23
3.11.細胞活性試驗 (MTT assay) 24
3.12.細胞週期分析 (Flow Cytometry) 25
3.13.細胞傷痕癒合試驗 (Wound healing) 26
3.14.免疫沈澱 (Immunoprecipitation Assay) 27
3.15.穩定同位素標定與蛋白質鑑定 (SILAC labeling and protein Identification) 28 3.16.銀染 (Silver stain) 29
3.17.膠體內蛋白質水解 (In-gel digestion) 29
3.18.溶液相蛋白質水解 (In-solution digestion) 31
3.19.交互作用網絡分析32

第四章 實驗結果33
4.1. 探討 NARS 對肺腺癌細胞株爬行、侵襲及生長能力的影響. 33
4.2. 探討 NARS 與 Akt 及 ERK 訊息傳導分子的相關性37
4.4. 研究受 NARS 影響之差異性蛋白質與癌化過程的關係42
5.1. 探討 NARS 對肺腺癌細胞株爬行、侵襲及生長能力的 45
5.2. 探討 NARS 與 Akt 及 ERK 訊息傳導分子的相關性47
5.3. 找尋 NARS 交互作用蛋白質及探討 NARS 與其交互作用蛋白質之相關49
5.4. 研究受 NARS 影響之差異性蛋白質與癌化過程的關係52

參考文獻57
附錄93

圖表65

表目錄
表ㄧ. NARS 之雙股小片段 RNA 序列65
表二. NARS 引子設計66
表三. NARS 基因弱化後具 1.5 倍差異性表現之分子可能參與之 pathway map 及 process Networks 67
表四. 肺腺癌細胞株基因組態68

圖目錄
圖ㄧ. 在肺腺癌細胞株中探討 NARS-mediated 肺癌轉移的實驗策 略69
圖二. 在四株肺腺癌細胞株中將 NARS 基因弱化後觀察其細胞爬行 能力試驗 (Migration Assay) 70
圖三. 在兩株肺腺癌細胞株將 NARS 基因弱化後其細胞群聚爬行能 力 ( Wound-healing Assay ) 71
圖四. 在四株肺腺癌細胞株將 NARS 基因弱化後其細胞侵襲能力試 驗 (Invasion Assay) 72
圖五. 在三株肺腺癌細胞株將 NARS 基因弱化後細胞生長能力分 析 73
圖六. 在三株肺腺癌細胞株 NARS 基因弱化後細胞週期分 析74
圖七. 在 Hela 及 A549 細胞株過度表現 NARS /pcDNA3.1A 載 體78 圖八. 在三株肺腺癌細胞將 NARS 基因弱化對磷酸化 Akt 含量的影響79
圖九. 在三株肺腺癌細胞將 NARS 基因弱化對磷酸化 ERK 含量的 影響80
圖十. 在 CL1-0 肺腺癌細胞株以 NARS 抗體進行免疫沈澱尋找與 NARS 交互作用之蛋白質81
圖十一. NARS 交互作用之候選蛋白質82
圖十二. 以西方墨點法結合免疫沈澱法驗證 HSPA9 為 NARS 之交 互作用蛋白質83
圖十三. 在肺腺癌病人周邊正常組織與腫瘤組織檢體中 NARS 與 HSPA9 的表現量與相關性84
圖十四. 在 oncomine 肺腺癌數據庫中正常組織與腫瘤組織檢體中 NARS 與 HSPA9 的表現量與相關性85
圖十五. 利用 SILAC labeling 結合蛋白質體學鑑定分析肺腺癌細胞株在 NARS 基因弱化後的差異性蛋白質表現86
圖十六. NARS 基因弱化後的差異性蛋白質主要受 c-Myc 及 CREB1 轉錄因子所調控87
圖十七. 利用西方墨點法驗證 NARS 可能參與之訊息傳遞路徑中的候選蛋白質91
圖十八. 整合 NARS 具交互作用的蛋白質資料庫及 NARS 基因弱化後具差異性表現的蛋白質資料庫中篩選出與肺癌癌化相關分子92

附錄目錄

附圖一. 胺醯基化 tRNA 合成酶典型功能93
附圖二. 催化轉譯作用無關之新結構域94
附圖三. 肺腫瘤組織定量蛋白體平台偵測 NARS 的表現量95
附圖四. Human Protein Atlas 資料庫中 NARS 在腫瘤組織中的表 現96
附圖五. NARS Construct Map 97
附圖六. Human Protein Atlas 資料庫中 FLG2 在人類個組織中的表現量98
附圖七. Classical phosphoinositide 3 kinase (PI3K)/Akt signaling pathway 99
附圖八. The activation of PI3K/Akt/NF-κB pathway on NSCLC invasion 100
附圖九. Schematic overview of MAPK pathways 101
1. Mortality, G.B.D. and C. Causes of Death, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 385(9963): p. 117-71.
2. Janssen-Heijnen, M.L. and J.W. Coebergh, The changing epidemiology of lung cancer in Europe. Lung Cancer, 2003. 41(3): p. 245-58.
3. Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300.
4. Chheang, S. and K. Brown, Lung cancer staging: clinical and radiologic perspectives. Semin Intervent Radiol, 2013. 30(2): p. 99-113.
5. Hsu, C.H., et al., Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol Cell Proteomics, 2016. 15(7): p. 2396-410.
6. Ibba, M. and D. Soll, Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000. 69: p. 617-50.
7. Park, M.C., et al., Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A, 2012. 109(11): p. E640-7.
8. Pasternak, K., Extracellular presence of aminoacyl-tRNA synthetases. Ann Univ Mariae Curie Sklodowska Med, 1997. 52: p. 29-38.
9. Ray, P.S. and P.L. Fox, A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J, 2007. 26(14): p. 3360-72.
10. Tzima, E. and P. Schimmel, Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci, 2006. 31(1): p. 7-10.
11. Vellaichamy, A., et al., Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One, 2009. 4(9): p. e7075.
12. Mathews, M.B. and R.M. Bernstein, Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature, 1983. 304(5922): p. 177-9.
13. Hirakata, M., et al., Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol, 1999. 162(4): p. 2315-20.
14. Mathews, M.B., et al., Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J Exp Med, 1984. 160(2): p. 420-34.
15. Lee, J.W., et al., Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 2006. 443(7107): p. 50-5.
16. Kushner, J.P., et al., Elevated methionine-tRNA synthetase activity in human colon cancer. Proc Soc Exp Biol Med, 1976. 153(2): p. 273-6.
17. Park, S.G., et al., Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci U S A, 2005. 102(18): p. 6356-61.
18. Wasenius, V.M., et al., Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res, 2003. 9(1): p. 68-75.
19. Scandurro, A.B., et al., Gene microarray analysis reveals a novel hypoxia signal transduction pathway in human hepatocellular carcinoma cells. Int J Oncol, 2001. 19(1): p. 129-35.
20. Guo, M. and P. Schimmel, Essential nontranslational functions of tRNA synthetases. Nat Chem Biol, 2013. 9(3): p. 145-53.
21. Jia, J., et al., WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell, 2008. 29(6): p. 679-90.
22. Tzima, E., et al., VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem, 2005. 280(4): p. 2405-8.
23. Kim, S., S. You, and D. Hwang, Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer, 2011. 11(10): p. 708-18.
24. Guo, M., X.L. Yang, and P. Schimmel, New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 2010. 11(9): p. 668-74.
25. Kang, T., et al., AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol, 2012. 423(4): p. 475-81.
26. Han, J.M., et al., Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. J Biol Chem, 2006. 281(50): p. 38663-7.
27. Park, S.G., P. Schimmel, and S. Kim, Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A, 2008. 105(32): p. 11043-9.
28. Yao, P. and P.L. Fox, Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med, 2013. 5(3): p. 332-43.
29. Kim, Y.W., et al., Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma. PLoS One, 2012. 7(8): p. e40960.
30. Marie, P.J., Fibroblast growth factor signaling controlling osteoblast differentiation. Gene, 2003. 316: p. 23-32.
31. Marie, P.J., H. Miraoui, and N. Severe, FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors, 2012. 30(2): p. 117-23.
32. Wang, J.K., G. Gao, and M. Goldfarb, Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol, 1994. 14(1): p. 181-8.
33. Park, S.J., et al., Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone, 2009. 45(5): p. 994-1003.
34. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
35. Starenki, D., et al., Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 2015. 34(35): p. 4624-34.
36. Wadhwa, R., et al., Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer, 2006. 118(12): p. 2973-80.
37. Sievers, C., et al., Prohibitins are required for cancer cell proliferation and adhesion. PLoS One, 2010. 5(9): p. e12735.
38. Xue, G. and B.A. Hemmings, PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst, 2013. 105(6): p. 393-404.
39. Huang, C.Y., et al., CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 2009. 77(5): p. 794-803.
40. Shih, M.C., et al., TOPK/PBK promotes cell migration via modulation of the PI3K/PTEN/AKT pathway and is associated with poor prognosis in lung cancer. Oncogene, 2012. 31(19): p. 2389-400.
41. Xia, M., et al., Tramadol regulates proliferation, migration and invasion via PTEN/PI3K/AKT signaling in lung adenocarcinoma cells. Eur Rev Med Pharmacol Sci, 2016. 20(12): p. 2573-80.
42. Akca, H., et al., Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells. Lung Cancer, 2011. 73(3): p. 302-9.
43. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90.
44. Peng, Y.G., et al., Rap2b promotes proliferation, migration, and invasion of lung cancer cells. J Recept Signal Transduct Res, 2016. 36(5): p. 459-64.
45. Daugaard, M., M. Rohde, and M. Jaattela, The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett, 2007. 581(19): p. 3702-10.
46. Leustek, T., et al., A member of the Hsp70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proc Natl Acad Sci U S A, 1989. 86(20): p. 7805-8.
47. Wadhwa, R., et al., Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem, 1998. 273(45): p. 29586-91.
48. Wu, P.K., et al., A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol, 2013. 33(20): p. 4051-67.
49. Na, Y., et al., Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res, 2016.
50. Sakamoto, K.M. and D.A. Frank, CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res, 2009. 15(8): p. 2583-7.
51. Seo, H.S., et al., Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res, 2008. 68(15): p. 6065-73.
52. Aggarwal, S., et al., Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res, 2008. 68(4): p. 981-8.
53. Guo, Y., et al., Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res, 1994. 54(6): p. 1561-5.
54. Gao, Y., et al., Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget, 2015. 6(11): p. 9313-26.
55. Guanghu Li, et al., Overexpression of CD44 is associated with the occurrence and migration of non-small cell lung cancer. Mol Med Rep., 2016: p. 3159-3167.
56. Lo, Y.W., et al., Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicin-resistant uterine cancer. J Cell Mol Med, 2015. 19(4): p. 744-59.
57. Liu, Q., et al., Malate dehydrogenase 2 confers docetaxel resistance via regulations of JNK signaling and oxidative metabolism. Prostate, 2013. 73(10): p. 1028-37.
58. Cheng, J., et al., Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog, 2014. 53(10): p. 820-32.
59. ATCC, Cell Lines Organized by Specific Gene Mutation. 2014.
60. Tsai, L.H., et al., LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene, 2014. 33(29): p. 3851-60.
61. Hong, T.M., et al., Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am J Respir Cell Mol Biol, 2000. 23(3): p. 355-63.
62. Perona, J.J. and I. Gruic-Sovulj, Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem, 2014. 344: p. 1-41.
63. Hakan Kucuksayan H, S.A.S.a.A.H., Pl3K/Akt/NF-κB Signalling Pathway on NSCLC Invasion. Med chem, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊