|
1. Mortality, G.B.D. and C. Causes of Death, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 385(9963): p. 117-71. 2. Janssen-Heijnen, M.L. and J.W. Coebergh, The changing epidemiology of lung cancer in Europe. Lung Cancer, 2003. 41(3): p. 245-58. 3. Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300. 4. Chheang, S. and K. Brown, Lung cancer staging: clinical and radiologic perspectives. Semin Intervent Radiol, 2013. 30(2): p. 99-113. 5. Hsu, C.H., et al., Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma. Mol Cell Proteomics, 2016. 15(7): p. 2396-410. 6. Ibba, M. and D. Soll, Aminoacyl-tRNA synthesis. Annu Rev Biochem, 2000. 69: p. 617-50. 7. Park, M.C., et al., Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A, 2012. 109(11): p. E640-7. 8. Pasternak, K., Extracellular presence of aminoacyl-tRNA synthetases. Ann Univ Mariae Curie Sklodowska Med, 1997. 52: p. 29-38. 9. Ray, P.S. and P.L. Fox, A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J, 2007. 26(14): p. 3360-72. 10. Tzima, E. and P. Schimmel, Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci, 2006. 31(1): p. 7-10. 11. Vellaichamy, A., et al., Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases. PLoS One, 2009. 4(9): p. e7075. 12. Mathews, M.B. and R.M. Bernstein, Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature, 1983. 304(5922): p. 177-9. 13. Hirakata, M., et al., Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J Immunol, 1999. 162(4): p. 2315-20. 14. Mathews, M.B., et al., Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J Exp Med, 1984. 160(2): p. 420-34. 15. Lee, J.W., et al., Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 2006. 443(7107): p. 50-5. 16. Kushner, J.P., et al., Elevated methionine-tRNA synthetase activity in human colon cancer. Proc Soc Exp Biol Med, 1976. 153(2): p. 273-6. 17. Park, S.G., et al., Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci U S A, 2005. 102(18): p. 6356-61. 18. Wasenius, V.M., et al., Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res, 2003. 9(1): p. 68-75. 19. Scandurro, A.B., et al., Gene microarray analysis reveals a novel hypoxia signal transduction pathway in human hepatocellular carcinoma cells. Int J Oncol, 2001. 19(1): p. 129-35. 20. Guo, M. and P. Schimmel, Essential nontranslational functions of tRNA synthetases. Nat Chem Biol, 2013. 9(3): p. 145-53. 21. Jia, J., et al., WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell, 2008. 29(6): p. 679-90. 22. Tzima, E., et al., VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem, 2005. 280(4): p. 2405-8. 23. Kim, S., S. You, and D. Hwang, Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer, 2011. 11(10): p. 708-18. 24. Guo, M., X.L. Yang, and P. Schimmel, New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 2010. 11(9): p. 668-74. 25. Kang, T., et al., AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol, 2012. 423(4): p. 475-81. 26. Han, J.M., et al., Hierarchical network between the components of the multi-tRNA synthetase complex: implications for complex formation. J Biol Chem, 2006. 281(50): p. 38663-7. 27. Park, S.G., P. Schimmel, and S. Kim, Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A, 2008. 105(32): p. 11043-9. 28. Yao, P. and P.L. Fox, Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med, 2013. 5(3): p. 332-43. 29. Kim, Y.W., et al., Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma. PLoS One, 2012. 7(8): p. e40960. 30. Marie, P.J., Fibroblast growth factor signaling controlling osteoblast differentiation. Gene, 2003. 316: p. 23-32. 31. Marie, P.J., H. Miraoui, and N. Severe, FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors, 2012. 30(2): p. 117-23. 32. Wang, J.K., G. Gao, and M. Goldfarb, Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol, 1994. 14(1): p. 181-8. 33. Park, S.J., et al., Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone, 2009. 45(5): p. 994-1003. 34. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 35. Starenki, D., et al., Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 2015. 34(35): p. 4624-34. 36. Wadhwa, R., et al., Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer, 2006. 118(12): p. 2973-80. 37. Sievers, C., et al., Prohibitins are required for cancer cell proliferation and adhesion. PLoS One, 2010. 5(9): p. e12735. 38. Xue, G. and B.A. Hemmings, PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst, 2013. 105(6): p. 393-404. 39. Huang, C.Y., et al., CCL5 increases lung cancer migration via PI3K, Akt and NF-kappaB pathways. Biochem Pharmacol, 2009. 77(5): p. 794-803. 40. Shih, M.C., et al., TOPK/PBK promotes cell migration via modulation of the PI3K/PTEN/AKT pathway and is associated with poor prognosis in lung cancer. Oncogene, 2012. 31(19): p. 2389-400. 41. Xia, M., et al., Tramadol regulates proliferation, migration and invasion via PTEN/PI3K/AKT signaling in lung adenocarcinoma cells. Eur Rev Med Pharmacol Sci, 2016. 20(12): p. 2573-80. 42. Akca, H., et al., Invasiveness and anchorage independent growth ability augmented by PTEN inactivation through the PI3K/AKT/NFkB pathway in lung cancer cells. Lung Cancer, 2011. 73(3): p. 302-9. 43. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90. 44. Peng, Y.G., et al., Rap2b promotes proliferation, migration, and invasion of lung cancer cells. J Recept Signal Transduct Res, 2016. 36(5): p. 459-64. 45. Daugaard, M., M. Rohde, and M. Jaattela, The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett, 2007. 581(19): p. 3702-10. 46. Leustek, T., et al., A member of the Hsp70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proc Natl Acad Sci U S A, 1989. 86(20): p. 7805-8. 47. Wadhwa, R., et al., Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem, 1998. 273(45): p. 29586-91. 48. Wu, P.K., et al., A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol, 2013. 33(20): p. 4051-67. 49. Na, Y., et al., Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res, 2016. 50. Sakamoto, K.M. and D.A. Frank, CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res, 2009. 15(8): p. 2583-7. 51. Seo, H.S., et al., Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res, 2008. 68(15): p. 6065-73. 52. Aggarwal, S., et al., Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res, 2008. 68(4): p. 981-8. 53. Guo, Y., et al., Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res, 1994. 54(6): p. 1561-5. 54. Gao, Y., et al., Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget, 2015. 6(11): p. 9313-26. 55. Guanghu Li, et al., Overexpression of CD44 is associated with the occurrence and migration of non-small cell lung cancer. Mol Med Rep., 2016: p. 3159-3167. 56. Lo, Y.W., et al., Mitochondrial proteomics with siRNA knockdown to reveal ACAT1 and MDH2 in the development of doxorubicin-resistant uterine cancer. J Cell Mol Med, 2015. 19(4): p. 744-59. 57. Liu, Q., et al., Malate dehydrogenase 2 confers docetaxel resistance via regulations of JNK signaling and oxidative metabolism. Prostate, 2013. 73(10): p. 1028-37. 58. Cheng, J., et al., Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog, 2014. 53(10): p. 820-32. 59. ATCC, Cell Lines Organized by Specific Gene Mutation. 2014. 60. Tsai, L.H., et al., LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene, 2014. 33(29): p. 3851-60. 61. Hong, T.M., et al., Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am J Respir Cell Mol Biol, 2000. 23(3): p. 355-63. 62. Perona, J.J. and I. Gruic-Sovulj, Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem, 2014. 344: p. 1-41. 63. Hakan Kucuksayan H, S.A.S.a.A.H., Pl3K/Akt/NF-κB Signalling Pathway on NSCLC Invasion. Med chem, 2016.
|