跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張孜璇
研究生(外文):Tzu Hsuan Chang
論文名稱:探討MDM2蛋白質對卡波西氏肉瘤疱疹病毒ORF50蛋白質的調控
論文名稱(外文):Regulation of the Abundance of Kaposi’s Sarcoma-associated Herpesvirus ORF50 Protein by Oncoprotein MDM2
指導教授:劉世東
指導教授(外文):S. T. Liu
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:135
中文關鍵詞:卡波西氏肉瘤疱疹病毒ORF50蛋白質MDM2蛋白質蛋白質穩定性泛素化E3 ligase
外文關鍵詞:KSHVORF50MDM2protein stabilityubiqitin E3 ligase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
卡波西氏肉瘤疱疹病毒或稱為人類第8號疱疹病毒為gammaherpesvirus的一員,已知和三種人類惡性腫瘤的形成有關,包括了卡波西氏肉瘤、原發性滲出性淋巴瘤、和多發性Castleman氏病。像所有的疱疹病毒一樣,卡波西氏肉瘤病毒具有潛伏與溶裂複製兩個不同的生活史。此病毒由潛伏生活史過渡至溶裂複製生活史的轉換,對於病毒的繁衍和病毒的致病性皆極為重要。在生活史轉換過程中,一個多功能的病毒蛋白質,稱之為ORF50蛋白質,是負責整個啟動的關鍵。雖然ORF50蛋白質是控制病毒進入複製期的重要蛋白質,可是目前對於ORF50蛋白質穩定性的調控機制仍不清楚。先前實驗室的研究結果顯示ORF50蛋白質C端含有兩個能調控ORF50蛋白質表現的PARS (protein abundance regulatory signal), PARS-I位在ORF50蛋白質第495個胺基酸到第535個胺基酸,而 PARS-II 位於ORF50蛋白質第590個胺基酸到第650個胺基酸,當PARS-I或是PARS-II有突變,都會使得ORF50的蛋白質表現遠高於wild-type ORF50蛋白質表現。在本篇論文中我們主要是要探討PARS-I和PARS-II對於ORF50蛋白質表現所扮演的角色以及研究ORF50蛋白質穩定性調控機制。目前結果顯示PARS-I為 ORF50蛋白質主要進核訊號,能透過影響ORF50蛋白質的進核來影響蛋白質的穩定性,而進到細胞核之後ORF50蛋白質的PARS-II對調控蛋白質的穩定性很重要,其中發現具有E3 ligase功能的致癌蛋白質MDM2能與PARS區域結合而促進ORF50蛋白質的降解, MDM2蛋白質能將ORF50蛋白質泛素化修飾,而泛素化修飾的位置可能位在N端的第152與154個胺基酸位置的lysine。我們目前所有的研究結果顯示MDM2蛋白質為一個新的KSHV溶裂期的負調控子,而MDM2 蛋白質與ORF50蛋白質之間表現的平衡可能是決定KSHV能否由潛伏感染期走向溶裂期的關鍵之一。
Kaposi’s sarcoma-associated herpesvirus (KSHV) or called human herpesvirus-8 (HHV-8) is a gammaherpesvirus associated with at least three human malignancies, including Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Like all herpesviruses, KSHV manifests two distinct phases of its life cycle, latency and lytic replication. The switch between latency and the lytic cycle is important not only for viral propagation but also for viral pathogenesis. The switch from viral latency to lytic replication is initiated by the expression of a transcriptional activator encoded in open reading frame 50 (ORF50) of viral genome. Although the ORF50 protein is the key controller for viral reactivation, the mechanism underlying the regulation of its protein stability remains largely unknown. Previously, our laboratory has shown that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates the abundance of ORF50 protein. The PARS region consists of two critical components: one component is located between aa 490 and 535 (PARS-I), and the other component is located between aa 590 and 650 (PARS-II). Mutations of either component lead to abundant expression of ORF50 protein. In this study, we characterized the functional role of each PARS component in controlling the ORF50 abundance and determined the molecular mechanism underling the protein stability of ORF50. We show here that the PARS-I motif mainly serves as a nuclear localization signal in the control of ORF50 stability, and the PARS-II motif is required for ORF50 degradation after the protein enters the nucleus. Importantly, we find that cellular oncoprotein MDM2, an E3 ubiquitin ligase, binds to the PARS region of ORF50 and promotes ORF50 degradation. The putative ubiquitin acceptor sites targeted by MDM2 are mapped to K152 and K154 in the N-terminal region of ORF50. Overall, our findings suggest that MDM2 may be a novel negative regulator of KSHV reactivation and the balance between ORF50 and MDM2 expression may be critical to determining the switch between latency and the lytic cycle.
目錄
指導教授推薦書
口試委員會審定書
誌謝 iii
中文摘要 iv
英文摘要 v
第壹章、緒論 1
一、卡波西氏肉瘤疱疹病毒(KSHV) 1
二、卡波西氏肉瘤疱疹病毒的結構與生活史 6
三、ORF50蛋白質 9
(一) ORF50蛋白質的功能 9
(二) ORF50蛋白質的DNA結合能力和蛋白質表現 12
(三)與ORF50蛋白質有交互作用的蛋白質 13
(四) ORF50蛋白質的轉譯後修飾 14
四、MDM2蛋白質 17

第貳章、研究目的 20

第參章、材料與方法 23
一、細胞培養與轉染 23
二、質體的構築 23
三、免疫螢光染色 24
四、西方墨點法 25
五、ORF50蛋白質泛素分析 26
六、蛋白質穩定性分析 27
七、共免疫沉澱 27
八、GST pull down 28
九、In vitro泛素分析 29
十、以慢病毒(Lentivirus)載體介導RNAi (RNA interference) 29

第肆章、結果 32
一、ORF50蛋白質的A form為高度磷酸化蛋白質,B form為低度磷酸化蛋 白質 32
二、ORF50蛋白質的PARS -I能影響蛋白質進核能力而影響蛋白質表現 35
三、ORF50會形成聚合子再進到細胞核,之後在細胞核中降解 42
四、ORF50蛋白質PARS-II區域會影響ORF50蛋白質在細胞核中的表現.......46
五、ORF50蛋白質為泛素化修飾的蛋白質 59
六、ORF50蛋白質有兩個區域能影響ORF50蛋白質的泛素化 63
七、MDM2蛋白質能透過ORF50蛋白質的C端來降低ORF50蛋白質的表現 68
八、在in vivo的條件下,MDM2蛋白質能與ORF50蛋白質結合.......................74
九、MDM2蛋白質第1-220胺基酸區能與ORF50蛋白質C端第490-691胺基酸區域結合 78
十、MDM2蛋白質為ORF50蛋白質泛素化的E3 ligase.....................................86
十一、MDM2蛋白質會透過ORF50蛋白質N端第152個與第154個胺基酸來調控ORF50蛋白質的穩定性 88
十二、在KSHV溶裂期中MDM2蛋白質與ORF50蛋白質的表現 93

第伍章、討論 96
一、ORF50蛋白質的降解有兩個重要的步驟 96
二、MDM2蛋白質能與ORF50蛋白質結合且會促進ORF50蛋白質的降解.....99
三、MDM2蛋白質在KSHV潛伏感染期與溶裂期的角色..................................102

第陸章、未來工作與展望 106
一、確認ORF50蛋白質被泛素修飾的鍵結位置與類型......................................106
二、LANA-MDM2-p53複合體是否會影響ORF50蛋白質的穩定性.................107
三、當KSHV走向溶裂期時MDM2蛋白質的負調控因子.................................108

第柒章、結論 111
一、 ORF50蛋白質C端PARS區域會透過影響蛋白質穩定性進而影響 ORF50蛋白質的表現 111
二、ORF50蛋白質是會被泛素修飾而透過蛋白酶體降解..................................111
三、MDM2蛋白質為ORF50蛋白質泛素化的E3 ligase.....................................112
四、MDM2蛋白質為ORF50蛋白質的負調控因子............................................112

參考文獻 114


圖目錄

圖1-1、 KSHV的基因體圖譜 4
圖1-2、 KSHV的兩階段生活史 8
圖1-3、 ORF50蛋白質以及其相關蛋白質的結合位 11
圖1-4、 ORF50蛋白質 16
圖1-5、 MDM2蛋白質 19
圖2-1、 ORF50蛋白質的表現會被PARS-I與PARS-II所調控...............................22
圖4-1、 ORF50蛋白質A form為高度磷酸化,B form為低度磷酸化.....................34
圖4-2、 PARS-I中的KKRK motif為ORF50蛋白質的主要進核訊號...................38
圖4-3、 ORF50(KK/EE)由細胞質進到細胞核後,蛋白質表現會恢復到wild-type ORF50的程度 41
圖4-4、 ORF50(KK/EE)由細胞質進到細胞核後,蛋白質表現會恢復到wild-type ORF50的程度 44
圖4-5、 ORF50蛋白質的PARS-II不影響ORF50蛋白質進核能力.......................49
圖4-6、 ORF50蛋白質的NLS1為較無效率的進核訊號.........................................51
圖4-7、 ORF50(KK/EE)由細胞質進到細胞核後,蛋白質表現會恢復到wild-type ORF50的程度 56
圖4-8、 ORF50蛋白質N端1-490能和ORF50(KK/EE)結合.................................58
圖4-9、 ORF50蛋白質是被泛素化修飾的蛋白質 61
圖4-10、 ORF50蛋白質的PARS-II以及N端第1個胺基酸到第356個胺基酸對於ORF50蛋白質被泛素修飾很重要 66
圖4-11、 泛素化相關蛋白質與ORF50蛋白質 71
圖4-12、 MDM2 蛋白質會降低ORF50蛋白質的表現 73
圖4-13、 MDM2蛋白質會和ORF50蛋白質結合 76
圖4-14、 MDM2蛋白質會和ORF50蛋白質直接結合 80
圖4-15、 確認His-ORF50蛋白質、GST-MDM2蛋白質與GST-MDM2刪除株的完整性 84
圖4-16、 在in vitro的條件下,MDM2蛋白質能促進ORF50蛋白質的泛素化......87
圖4-17、 ORF50蛋白質第152與154個胺基酸lysine為影響ORF50蛋白質穩定性的重要胺基酸 91
圖4-18、 在被KSHV感染的細胞中,MDM2蛋白質能負調控ORF50蛋白質......95
圖5-1、 PARS-I與PARS-II調控ORF50蛋白質表現的模式..............................105
圖6-1、 ORF50蛋白第152個與第154個胺基酸可能為K48-linked泛素化修飾的位置 109


表目錄

表一、本論文中所構築的質體 31
Albrecht, J.C., Nicholas, J., Biller, D., Cameron, K.R., Biesinger, B., Newman, C., Wittmann, S., Craxton, M.A., Coleman, H., Fleckenstein, B., et al. (1992). Primary structure of the herpesvirus saimiri genome. J Virol 66, 5047-5058.

Alexander, L., Denekamp, L., Knapp, A., Auerbach, M.R., Damania, B., and Desrosiers, R.C. (2000). The primary sequence of rhesus monkey rhadinovirus isolate 26-95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74, 3388-3398.

Arvanitakis, L., Mesri, E.A., Nador, R.G., Said, J.W., Asch, A.S., Knowles, D.M., and Cesarman, E. (1996). Establishment and characterization of a primary effusion (body cavity- based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88, 2648-2654.

AuCoin, D.P., Colletti, K.S., Cei, S.A., Papouskova, I., Tarrant, M., and Pari, G.S. (2004). Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology 318, 542-555.

Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.

Balistreri, G., Viiliainen, J., Turunen, M., Diaz, R., Lyly, L., Pekkonen, P., Rantala, J., Ojala, K., Sarek, G., Teesalu, M., et al. (2016). Oncogenic Herpesvirus Utilizes Stress-Induced Cell Cycle Checkpoints for Efficient Lytic Replication. PLoS Pathog 12, e1005424.

Bechtel, J.T., Winant, R.C., and Ganem, D. (2005). Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 4952-4964.

Boshoff, C., Schulz, T.F., Kennedy, M.M., Graham, A.K., Fisher, C., Thomas, A., McGee, J.O., Weiss, R.A., and O'Leary, J.J. (1995). Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1, 1274-1278.

Boshoff, C., and Weiss, R.A. (1998). Kaposi's sarcoma-associated herpesvirus. Adv Cancer Res 75, 57-86.

Boyd, M.T., Vlatkovic, N., and Rubbi, C.P. (2011). The nucleolus directly regulates p53 export and degradation. J Cell Biol 194, 689-703.

Browning, P.J., Sechler, J.M., Kaplan, M., Washington, R.H., Gendelman, R., Yarchoan, R., Ensoli, B., and Gallo, R.C. (1994). Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood 84, 2711-2720.

Bu, W., Carroll, K.D., Palmeri, D., and Lukac, D.M. (2007). Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta lytic switch protein functions as a tetramer. J Virol 81, 5788-5806.

Bu, W., Palmeri, D., Krishnan, R., Marin, R., Aris, V.M., Soteropoulos, P., and Lukac, D.M. (2008). Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 82, 10709-10723.

Cahilly-Snyder, L., Yang-Feng, T., Francke, U., and George, D.L. (1987). Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 13, 235-244.

Cai, Q.L., Knight, J.S., Verma, S.C., Zald, P., and Robertson, E.S. (2006). EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2, e116.

Campbell, M., and Izumiya, Y. (2012). Post-Translational Modifications of Kaposi's Sarcoma-Associated Herpesvirus Regulatory Proteins - SUMO and KSHV. Front Microbiol 3, 31.

Cesarman, E., Chang, Y., Moore, P.S., Said, J.W., and Knowles, D.M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186-1191.

Chang, J., Renne, R., Dittmer, D., and Ganem, D. (2000). Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology 266, 17-25.

Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., and Liu, S.T. (2004). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-38812.

Chang, M., Brown, H.J., Collado-Hidalgo, A., Arevalo, J.M., Galic, Z., Symensma, T.L., Tanaka, L., Deng, H., Zack, J.A., Sun, R., et al. (2005a). beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 79, 13538-13547.

Chang, P.J., and Miller, G. (2004). Autoregulation of DNA binding and protein stability of Kaposi's sarcoma-associated herpesvirus ORF50 protein. J Virol 78, 10657-10673.

Chang, P.J., Shedd, D., Gradoville, L., Cho, M.S., Chen, L.W., Chang, J., and Miller, G. (2002). Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76, 3168-3178.

Chang, P.J., Shedd, D., and Miller, G. (2005b). Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol 79, 8750-8763.

Chang, P.J., Shedd, D., and Miller, G. (2008). A mobile functional region of Kaposi's sarcoma-associated herpesvirus ORF50 protein independently regulates DNA binding and protein abundance. J Virol 82, 9700-9716.

Chang, Y., Cesarman, E., Pessin, M.S., Lee, F., Culpepper, J., Knowles, D.M., and Moore, P.S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865-1869.

Chen, G., Huang, H., Fröhlich, O., Yang, Y., Klein, J.D., Price, S.R., and Sands, J.M. (2008). MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation. American Journal of Physiology - Renal Physiology 295, F1528-F1534.

Chen, W., IB, H., Staudt, M., Burd, C., and Dittmer, D. (2010). Distinct p53, p53::LANA, and LANA complexes in Kaposi's sarcoma-associated herpesvirus lymphoma. J Viol 84, 3898-3908.

Davis, D.A., Rinderknecht, A.S., Zoeteweij, J.P., Aoki, Y., Read-Connole, E.L., Tosato, G., Blauvelt, A., and Yarchoan, R. (2001). Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97, 3244-3250.

Deng, H., Song, M.J., Chu, J.T., and Sun, R. (2002). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 76, 8252-8264.

Deng, H., Young, A., and Sun, R. (2000). Auto-activation of the rta gene of human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus. J Gen Virol 81, 3043-3048.

Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309-8315.

Dourmishev, L.A., Dourmishev, A.L., Palmeri, D., Schwartz, R.A., and Lukac, D.M. (2003). Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67, 175-212, table of contents.

Duprez, R., Lacoste, V., Briere, J., Couppie, P., Frances, C., Sainte-Marie, D., Kassa-Kelembho, E., Lando, M.J., Essame Oyono, J.L., Nkegoum, B., et al. (2007). Evidence for a multiclonal origin of multicentric advanced lesions of Kaposi sarcoma. J Natl Cancer Inst 99, 1086-1094.

Enchev, R.I., Schulman, B.A., and Peter, M. (2015). Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16, 30-44.

Fang, S., Jensen, J.P., Ludwig, R.L., Vousden, K.H., and Weissman, A.M. (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275, 8945-8951.

Goudsmit, J., Renwick, N., Dukers, N.H., Coutinho, R.A., Heisterkamp, S., Bakker, M., Schulz, T.F., Cornelissen, M., and Weverling, G.J. (2000). Human herpesvirus 8 infections in the Amsterdam Cohort Studies (1984-1997): analysis of seroconversions to ORF65 and ORF73. Proc Natl Acad Sci U S A 97, 4838-4843.

Gradoville, L., Gerlach, J., Grogan, E., Shedd, D., Nikiforow, S., Metroka, C., and Miller, G. (2000). Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74, 6207-6212.

Guito, J., and Lukac, D.M. (2012). KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 3, 30.

Gwack, Y., Hwang, S., Byun, H., Lim, C., Kim, J.W., Choi, E.J., and Choe, J. (2001). Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75, 6245-6248.

Gwack, Y., Nakamura, H., Lee, S.H., Souvlis, J., Yustein, J.T., Gygi, S., Kung, H.J., and Jung, J.U. (2003). Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23, 8282-8294.

Hagman, J., and Grosschedl, R. (1992). An inhibitory carboxyl-terminal domain in Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of the mb-1 gene. Proc Natl Acad Sci U S A 89, 8889-8893.

Honda, R., and Yasuda, H. (2000). Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473-1476.

Hong, Y.K., Foreman, K., Shin, J.W., Hirakawa, S., Curry, C.L., Sage, D.R., Libermann, T., Dezube, B.J., Fingeroth, J.D., and Detmar, M. (2004). Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36, 683-685.

Hupp, T.R., Sparks, A., and Lane, D.P. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237-245.

Izumi, T., Takaori-Kondo, A., Shirakawa, K., Higashitsuji, H., Itoh, K., Io, K., Matsui, M., Iwai, K., Kondoh, H., Sato, T., et al. (2009). MDM2 is a novel E3 ligase for HIV-1 Vif. Retrovirology 6, 1.

Izumiya, Y., Kobayashi, K., Kim, K.Y., Pochampalli, M., Izumiya, C., Shevchenko, B., Wang, D.H., Huerta, S.B., Martinez, A., Campbell, M., et al. (2013). Kaposi's sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL) like activity and is essential for viral reactivation. PLoS Pathog 9, e1003506.

Jaber, T., and Yuan, Y. (2013). A virally encoded small peptide regulates RTA stability and facilitates Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 87, 3461-3470.

Jayaraman, J., and Prives, C. (1995). Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81, 1021-1029.

Joo, C.H., Shin, Y.C., Gack, M., Wu, L., Levy, D., and Jung, J.U. (2007). Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi's sarcoma-associated herpesvirus viral IRF homolog vIRF3. J Virol 81, 8282-8292.

Kaposi, M. (1872). Idiopathisches multiples pigment-sarkom der haut. Archiv fur Dermatologie und Syphilis 4, 265-273.

Katano, H., Sato, Y., and Sata, T. (2001). Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer 92, 3076-3084.

Kedes, D.H., Lagunoff, M., Renne, R., and Ganem, D. (1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest 100, 2606-2610.

Krishnan, H.H., Naranatt, P.P., Smith, M.S., Zeng, L., Bloomer, C., and Chandran, B. (2004). Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78, 3601-3620.

Lan, K., Kuppers, D.A., Verma, S.C., Sharma, N., Murakami, M., and Robertson, E.S. (2005). Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79, 7453-7465.

Liang, Y., Chang, J., Lynch, S.J., Lukac, D.M., and Ganem, D. (2002). The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 16, 1977-1989.

Lin, R., Mamane, Y., and Hiscott, J. (1999). Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 19, 2465-2474.

Liu, S.T., Wang, W.H., Hong, Y.R., Chuang, J.Y., Lu, P.J., and Chang, L.K. (2006). Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxbeta. Virus Res 119, 163-170.

Lu, C., Zeng, Y., Huang, Z., Huang, L., Qian, C., Tang, G., and Qin, D. (2005). Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. Am J Pathol 166, 173-183.

Martin, D.F., Kuppermann, B.D., Wolitz, R.A., Palestine, A.G., Li, H., and Robinson, C.A. (1999). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 340, 1063-1070.

Mesri, E.A., Cesarman, E., and Boshoff, C. (2010). Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 10, 707-719.

Miller, G., Heston, L., Grogan, E., Gradoville, L., Rigsby, M., Sun, R., Shedd, D., Kushnaryov, V.M., Grossberg, S., and Chang, Y. (1997). Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71, 314-324.

Minsky, N., and Oren, M. (2004). The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Molecular cell 16, 631-639.

Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction. Mol Cancer Res 1, 1001-1008.

Momand, J., Wu, H.H., and Dasgupta, G. (2000). MDM2--master regulator of the p53 tumor suppressor protein. Gene 242, 15-29.

Momand, J., Zambetti, G.P., Olson, D.C., George, D., and Levine, A.J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245.

Myoung, J., and Ganem, D. (2011). Active lytic infection of human primary tonsillar B cells by KSHV and its noncytolytic control by activated CD4+ T cells. J Clin Invest 121, 1130-1140.

Neipel, F., Albrecht, J.C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71, 4187-4192.

Neipel, F., Albrecht, J.C., and Fleckenstein, B. (1998). Human herpesvirus 8--the first human Rhadinovirus. J Natl Cancer Inst Monogr, 73-77.

Olson, D.C., Marechal, V., Momand, J., Chen, J., Romocki, C., and Levine, A.J. (1993). Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8, 2353-2360.

Petre, C.E., Sin, S.H., and Dittmer, D.P. (2007). Functional p53 signaling in Kaposi's sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 81, 1912-1922.

Piette, J., Neel, H., and Marechal, V. (1997). Mdm2: keeping p53 under control. Oncogene 15, 1001-1010.

Russo, J.J., Bohenzky, R.A., Chien, M.C., Chen, J., Yan, M., Maddalena, D., Parry, J.P., Peruzzi, D., Edelman, I.S., Chang, Y., et al. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93, 14862-14867.

Santag, S., Jager, W., Karsten, C.B., Kati, S., Pietrek, M., Steinemann, D., Sarek, G., Ojala, P.M., and Schulz, T.F. (2013). Recruitment of the tumour suppressor protein p73 by Kaposi's Sarcoma Herpesvirus latent nuclear antigen contributes to the survival of primary effusion lymphoma cells. Oncogene 32, 3676-3685.

Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. Embo J 21, 5206-5215.

Sarek, G., Kurki, S., Enback, J., Iotzova, G., Haas, J., Laakkonen, P., Laiho, M., and Ojala, P.M. (2007). Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 117, 1019-1028.

Saville, M.K., Sparks, A., Xirodimas, D.P., Wardrop, J., Stevenson, L.F., Bourdon, J.C., Woods, Y.L., and Lane, D.P. (2004). Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279, 42169-42181.

Si, H., and Robertson, E.S. (2006). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol 80, 697-709.

Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d'Agay, M.F., Clauvel, J.P., Raphael, M., Degos, L., et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276-1280.

Sun, R., Lin, S.F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95, 10866-10871.

Sun, R., Lin, S.F., Staskus, K., Gradoville, L., Grogan, E., Haase, A., and Miller, G. (1999). Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 73, 2232-2242.

Suzuki, K., and Matsubara, H. (2011). Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011, 978312.

Swanton, C., Mann, D.J., Fleckenstein, B., Neipel, F., Peters, G., and Jones, N. (1997). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390, 184-187.

Tsai, W.H., Wang, P.W., Lin, S.Y., Wu, I.L., Ko, Y.C., Chen, Y.L., Li, M., and Lin, S.F. (2012). Ser-634 and Ser-636 of Kaposi's Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites. Front Microbiol 3, 60.

Virgin, H.W.t., Latreille, P., Wamsley, P., Hallsworth, K., Weck, K.E., Dal Canto, A.J., and Speck, S.H. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894-5904.

Wang, H.W., Trotter, M.W., Lagos, D., Bourboulia, D., Henderson, S., Makinen, T., Elliman, S., Flanagan, A.M., Alitalo, K., and Boshoff, C. (2004). Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36, 687-693.

Wang, S., Liu, S., Wu, M., Geng, Y., and Wood, C. (2001). Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 ORF50 gene product contains a potent C-terminal activation domain which activates gene expression via a specific target sequence. Arch Virol 146, 1415-1426.

Watson, I.R., Blanch, A., Lin, D.C., Ohh, M., and Irwin, M.S. (2006). Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281, 34096-34103.

Wen, K.W., and Damania, B. (2010). Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett 289, 140-150.

Xirodimas, D.P., Saville, M.K., Bourdon, J.C., Hay, R.T., and Lane, D.P. (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97.

Yang, Z., Yan, Z., and Wood, C. (2008). Kaposi's sarcoma-associated herpesvirus transactivator RTA promotes degradation of the repressors to regulate viral lytic replication. J Virol 82, 3590-3603.

Ye, F., Lattif, A.A., Xie, J., Weinberg, A., and Gao, S. (2012). Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 11, 1393-1399.

Yu, Y., Wang, S.E., and Hayward, G.S. (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22, 59-70.

Zhang, L., Chiu, J., and Lin, J.C. (1998). Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol 17, 735-742.

Zhu, F.X., Chong, J.M., Wu, L., and Yuan, Y. (2005). Virion proteins of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 800-811.

Zhu, Y., Poyurovsky, M.V., Li, Y., Biderman, L., Stahl, J., Jacq, X., and Prives, C. (2009). Ribosomal protein S7 is both a regulator and a substrate of MDM2. Molecular cell 35, 316-326.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top