跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱浩偉
研究生(外文):Hao Wei Chiu
論文名稱:石墨烯異質接面量測與電晶體製程之研究
論文名稱(外文):The Study of Graphene Heterojunction Measurement and Transistor Fabrication
指導教授:賴朝松
指導教授(外文):C. S. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:石墨烯氟化石墨烯能隙異質接面場效電晶體
外文關鍵詞:graphenefluorinated grapheneband gapheterojunctionfield effect transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
由於石墨烯零能隙的關係,使得它無法廣泛地應用於邏輯電路,本論文嘗試利用CF4電漿進行氟化摻雜,藉此打開石墨烯之能隙,並應用於電晶體上。首先,我們採用LPCVD的方式生長出石墨烯,且經由拉曼光譜分析檢測生長出的石墨烯為單層且無缺陷的,接著將樣品放至CF4電漿系統進行氟化,藉由氟原子與石墨烯表面的碳原子鍵結,達到氟化的效果,且依氟化程度的不同來調控氟化石墨烯的導電特性,其中經CF4電漿處理27.5~30分鐘之內可有效得到半導體特性的石墨烯。
論文第一部分,為氟化石墨烯(半導體) /石墨烯兩種不同材料所組成的異質接面元件,透過電性量測可得知當Vd到達臨界電壓時,電流會因為載子跨越了能障呈指數上升,且上升了4~6個級數,而電流為零的那段區間就是氟化石墨烯的能隙大小。
論文第二部分,是以氟化石墨烯作為載子通道的場效電晶體,本論文利用bottom-gate來調控其電流大小及幅度,也確實發現具有半導體特性的氟化石墨烯場效電晶體相較於石墨烯場效電晶體,可有效藉由閘極將電晶體關閉,且提高其電流on/off比,解決了石墨烯場效電晶體normally-on的問題,最終期望能透過氟化石墨烯製作出具有邏輯功能的電晶體。
Because of the zero band gap of graphene, it can not be widely used in logic circuits. In this thesis, we try to use CF4 plasma to dope fluorine into the graphene, thus opening the band gap of graphene and applying it to the transistors. First of all, graphene is grown by LPCVD system, then we analyze it by Raman spectrum to make sure that the graphene is monolayer and no defects. Next, we put the samples into CF4 plasma system to fluoridize. And we can get the good results with fluorine atoms bonded to carbon atoms which are on the surface of the graphene. In addition, the conductive properties of fluorinated graphene can be controlled in accordance with different degree of fluorination. Among these results, which is treated by CF4 plasma from 27.5 to 30 minutes can obtain the semiconductive properties of graphene effectively.
In the first part of this article, we introduce the heterojunction device which is composed of two kinds of material (fluorinated graphene/ graphene). Through the electrical measurement, it can be seen that the current will increase exponentially when Vd reaches the threshold voltage. Even more, the current increases from 4 to 6 degrees. This phenomenon is attributed to the carriers that cross the barrier between fluorinated graphene and graphene. And the interval of zero current which is also the band gap of fluorinated graphene.
In the second part of this article, we base our field-effect transistor on channel made up of the fluorinated graphene. Besides, we try to use the bottom-gate to control the magnitude and the amplitude of the drain current. And we also found that the fluorinated graphene (semiconductive) transistor is better than the graphene transistor. Because the fluorinated graphene (semiconductive) transistor can not only be turned off by gate to good purpose but also be improved its on/ off ratio of the current. Therefore, the normally-on problem of the graphene transistor can be solved. Finally, we are looking forward to fabricating the fluorinated graphene transistor which can be switched.
指導教授推薦書
口試委員審定書
致謝 iii
中文摘要 iv
English Abstract v
目錄 vii
圖目錄 x
第一章 - 1 -
Introduction - 1 -
1.1 石墨烯的興起 - 1 -
1.2 石墨烯的製備方法 - 1 -
1.2.1機械剝離法 - 2 -
1.2.2碳化矽表面外延生長法 - 2 -
1.2.3金屬表面生長法 - 2 -
1.2.4氧化還原法 - 2 -
1.2.5化學氣相沉積法 - 3 -
1.3 石墨烯的應用 - 4 -
1.3.1石墨烯奈米帶 - 4 -
1.3.2石墨烯電晶體 - 4 -
1.3.3透明導電電極 - 4 -
1.3.4單分子氣體偵測 - 4 -
1.4 石墨烯場效電晶體所面臨的挑戰 - 4 -
1.5 實驗動機 - 6 -
第二章 - 16 -
實驗及製程方法 - 16 -
2.1 Sample的製備 - 16 -
2.1.1石墨烯的合成 - 16 -
2.1.2石墨烯轉印 - 17 -
2.2 石墨烯device的製作 - 17 -
2.2.1 Junction製程 - 17 -
2.2.2 Top–Gate Transistor製程 - 20 -
第三章 - 33 -
石墨烯/氟化石墨烯通道之Junction特性探討 - 33 -
3.1 Pristine Graphene和Fluorinated Graphene的檢測 - 33 -
3.1.1拉曼光譜分析(Raman) - 33 -
3.2Junction I-V Curve量測 - 34 -
3.2.1 Id-Vd Curve Characteristic - 34 -
3.2.2 Junction能帶圖與操作原理 - 35 -
3.3小結歸納 - 36 -
第四章 - 47 -
氟化石墨烯通道之 Transistor特性探討 - 47 -
4.1Bottom–Gate Transistor I-V Curve量測 - 47 -
4.1.1 Id-Vd Curve Characteristic - 47 -
4.1.2 Id-Vg Curve Characteristic - 47 -
4.1.3 Transistor能帶圖與操作原理 - 47 -
4.2小結歸納 - 48 -
第五章 - 52 -
結論與未來展望 - 52 -
參考文獻 - 53 -

圖1- 1石墨烯的二維結構[維基百科] - 6 -
圖1- 2石墨烯為構成碳同素異形體的基本單元[5] - 7 -
圖1- 3玻璃、不同層數之石墨烯與其在玻璃基板的透光率[6] - 7 -
圖1- 4室溫下石墨烯與奈米碳管的導熱係數[3] - 8 -
圖1- 5石墨烯之機械剝離法製程[7] - 8 -
圖1- 6石墨烯之碳化矽表面外延生長法機制[8] - 9 -
圖1- 7石墨烯之氧化還原法機制[10] - 10 -
圖1- 8石墨烯化學氣相沉積之表面沉積成長機制[12] - 10 -
圖1- 9石墨烯晶粒(黑色圓點區域為成核位置)[12] - 11 -
圖1- 10石墨烯化學氣相沉積之表面析出成長機制[13] - 11 -
圖1- 11不同冷卻速率下於鎳表面析出成長的石墨烯拉曼光譜[13] - 12 -
圖1- 12銅、單壁奈米碳管與多層石墨烯奈米帶佈線結構圖[14] - 12 -
圖1- 13銅、單壁奈米碳管與多層石墨烯奈米帶佈線結構之每單位長度電阻值[14] - 13 -
圖1- 14量測石墨烯之橫向霍爾電阻,於純質(綠線)、逐漸吸附NO2分子(藍線)與以50℃加熱逐漸脫附NO2分子(紅線)之隨時間關係圖[16] - 13 -
圖1- 15石墨烯場效元件back-gate傳導特性圖(有/無top-gate) [17] - 14 -
圖1- 16石墨烯的能帶結構圖[19] - 14 -
圖1- 17懸浮石墨烯元件的橫截面結構圖[20] - 15 -
圖1- 18石墨烯載子遷移率之比較(虛線為石墨烯通道在基板上;藍線為石墨烯通道懸掛在基板上且無經過電流退火處理;紅線為石墨烯通道懸掛在基板上且經過電流退火處理)[20] - 15 -
圖2- 1生長石墨烯之LPCVD設備 - 23 -
圖2- 2石墨烯生長流程圖 - 24 -
圖2- 3石墨烯轉印製程流程圖 - 24 -
圖2- 4 Junction製程流程圖 - 25 -
圖2- 5石墨烯轉印至SiO2/Si基板的拍攝圖 - 26 -
圖2- 6定義Source/Drain圖形的OM圖 - 26 -
圖2- 7樣品蒸鍍完Ni後的拍攝圖 - 27 -
圖2- 8 Source/Drain掀離製程後的OM圖 - 27 -
圖2- 9定義載子通道圖形的OM圖 - 28 -
圖2- 10經過氧電漿蝕刻並去除光阻後的OM圖 - 28 -
圖2- 11 Filter的拍攝圖 - 29 -
圖2- 12定義Gate圖形的OM圖 - 29 -
圖2- 13 Gate掀離製程後的OM圖 - 30 -
圖2- 14 Top–Gate Transistor製程流程圖 - 31 -
圖2- 15樣品蒸鍍完Al後的拍攝圖 - 32 -
圖2- 16氧化鋁(native oxide)長在鋁和石墨烯之間的TEM圖[23] - 32 -
圖3- 1石墨烯D、G、2D-band涵義圖 - 36 -
圖3- 2 Pristine Graphene、氟化27.5、30及32.5分鐘石墨烯之拉曼光譜 - 37 -
圖3- 3 Pristine Graphene的Raman Mapping - 38 -
圖3- 4石墨烯/氟化石墨烯通道Junction的結構圖 - 38 -
圖3- 5氟化樣品之Id-Vd圖(a)氟化前 (b)氟化22.5分鐘後 - 39 -
圖3- 6氟化樣品之Id-Vd圖(a)氟化前 (b)氟化25分鐘後 - 39 -
圖3- 7氟化樣品之Id-Vd圖(a)氟化前 (b)氟化32.5分鐘後 - 39 -
圖3- 8量測點一之Id-Vd圖(a)氟化前 (b)氟化27.5分鐘後,Vd由負到正,再由正到負來回量測三次 (c)為圖(b)取log scale - 40 -
圖3- 9量測點二之Id-Vd圖(a)氟化前 (b)氟化27.5分鐘後,Vd由負到正,再由正到負來回量測四次 (c)為圖(b)取log scale - 41 -
圖3- 10量測點三之Id-Vd圖(a)氟化前 (b)氟化27.5分鐘後,Vd由負到正,再由正到負來回量測四次 (c)為圖(b)取log scale - 42 -
圖3- 11量測點一之Id-Vd圖(a)氟化前 (b)氟化30分鐘後,Vd由負到正,再由正到負來回量測四次 (c)為圖(b)取log scale - 43 -
圖3- 12量測點二之Id-Vd圖(a)氟化前 (b)氟化30分鐘後,Vd由負到正,再由正到負來回量測五次 (c)為圖(b)取log scale - 44 -
圖3- 13量測點三之Id-Vd圖(a)氟化前 (b)氟化30分鐘後,Vd由負到正,再由正到負來回量測三次 (c)為圖(b)取log scale - 45 -
圖3- 14石墨烯/氟化石墨烯異質接面能帶圖與操作原理(a)零偏壓時 (b)Vd < 0時 (c)Vd > 0時 - 46 -
圖4- 1氟化石墨烯通道之Top-Gate Transistor結構圖 - 48 -
圖4- 2氟化石墨烯通道之Bottom-Gate Transistor結構圖 - 49 -
圖4- 3 Bottom-Gate Transistor不同Vg下之Id-Vd圖 - 49 -
圖4- 4 Bottom-Gate Transistor不同Vd下之Id-Vg圖 - 50 -
圖4- 5石墨烯Top-Gate Transistor之Id-Vg圖 - 50 -
圖4- 6氟化石墨烯電晶體能帶圖與操作原理(a)P-type石墨烯之Id-Vg圖(b)氟化石墨烯在不同Vg下的能帶變化 - 51 -
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. Vol. 306(5696): pp. 666-669.
[2] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. Vol. 321(5887): pp. 385-388.
[3] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao and Chun Ning Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): pp. 902-907.
[4] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 2008. Vol. 146(9-10): pp. 351-355.
[5] A.K.Geim and P.Kim, Graphene, a Newly Isolated Form of Carbon, Provides a Rich Lode of Novel Fundamental Physics and Practical Applications. Scientific American, 2008. 298: pp. 90-97.
[6] Ce´ sar J. Lockhart de la Rosa, Jie Sun (孙捷), Niclas Lindvall, Matthew T. Cole, Youngwoo Nam, Markus Lo¨ffler, Eva Olsson, Kenneth B. K. Teo (张谋瑾), and August Yurgens, Frame Assisted H2O Electrolysis Induced H2 Bubbling Transfer of Large Area Graphene Grown by Chemical Vapor Deposition on Cu. Applied Physics Letters, 2013. 102, 022101.
[7] K S Novoselov and A H Castro Neto, Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties. Physica Scripta, 2012. 014006(6pp)
[8] Hiroki Hibino, Hiroyuki Kageshima, and Masao Nagase, Graphene Growth on Silicon Carbide. NTT Technical Review, 2010. Vol. 8 No. 8.
[9] Konstantin V. Emtsev, Aaron Bostwick, Karsten Horn, Johannes Jobst, Gary L. Kellogg, Lothar Ley, Jessica L. McChesney, Taisuke Ohta, Sergey A. Reshanov, Jonas Röhrl, Eli Rotenberg, Andreas K. Schmid, Daniel Waldmann, Heiko B. Weber & Thomas Seyller, Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nature Materials, 2009. Vol. 8: pp. 203-207.
[10] Hua Bai , Chun Li , and Gaoquan Shi, Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater, 2011. 23, 1089–1115.
[11] 蘇清源,<石墨烯氧化物之特性與應用前景>,物理雙月刊,33卷2期,163-167頁,2011。
[12] Cecilia Mattevi, Hokwon Kima and Manish Chhowalla, A Review of Chemical Vapour Deposition of Graphene on Copper. Journal of Materials Chemistry, 2011. 21, 3324–3334.
[13] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei, Graphene Segregated on Ni Surfaces and Transferred to Insulators. Applied Physics Letters, 2008. 93, 113103.
[14] Tamer Ragheb, Yehia Massoud, On the Modeling of Resistance in Graphene
Nanoribbon (GNR) for Future Interconnect Applications. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, 2008. 4681637, pp. 593-598.
[15] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D. Piner, Luigi Colombo, and Rodney S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. Vol. 9, No. 12 4359-4363.
[16] F. SCHEDIN, A. K. GEIM, S. V. MOROZOV, E. W. HILL, P. BLAKE, M. I. KATSNELSON AND K. S. NOVOSELOV, Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 2007. 6 (9), pp. 652-655.
[17] Max C. Lemme, Senior Member, IEEE, Tim J. Echtermeyer, Matthias Baus, and Heinrich Kurz, A Graphene Field-Effect Device. Electron Device Letters, Ieee, 2007. 28: p. 282-284.
[18] S. Banerjee, M. Sardar, N. Gayathri, A. K. Tyagi, and B. Raj, Enhanced Conductivity in Graphene Layers and at Their Edges. Appl. Phys. Lett., 2006. vol. 88, no. 6: pp. 62 111-1–62 111-3.
[19] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, The Electronic Properties of Graphene. Reviews of Modern Physics, 2009. vol. 81: pp. 109-162.
[20] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 2008. 146 351–355.
[21] Chao Shen, Gaoshan Huang, Yingchun Cheng, Ronggen Cao, Fei Ding, Udo Schwingenschlögl and Yongfeng Mei, Thinning and Functionalization of Few-Layer Graphene Sheets by CF4 Plasma Treatment. Nanoscale Research Letters, 2012. Vol. 7, 268(8pp).
[22] Jeremy T. Robinson, James S. Burgess, Chad E. Junkermeier, Stefan C. Badescu, Thomas L. Reinecke, F. Keith Perkins, Maxim K. Zalalutdniov, Jeffrey W. Baldwin, James C. Culbertson, Paul E. Sheehan, and Eric S. Snow, Properties of Fluorinated Graphene Films. Nano Letters, 2010. 10 (8), pp 3001–3005.
[23] Chun-Chieh Lu, Yung-Chang Lin, Chao-Hui Yeh, Ju-Chun Huang, and Po-Wen Chiu, High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics. Acsnano, 2012. VOL. 6, NO. 5: 4469–4474.
[24] Mark Wall, Ph.D. , The Raman Spectroscopy of Graphene and the Determination of Layer Thickness. Thermo Fisher Scientific, 2011.
[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97 (18), 187401.
[26] Andrea C. Ferrari and Denis M. Basko, Raman Spectroscopy as a Versatile Tool for Studying The Properties of Graphene. Nature Nanotechnology, 2013. VOL. 8, 235-246.
[27] Kuan-I Ho , Jia-Hong Liao , Chi-Hsien Huang , Chang-Lung Hsu , Wenjing Zhang , Ang-Yu Lu , Lain-Jong Li , Chao-Sung Lai , and Ching-Yuan Su, One-Step Formation of a Single Atomic-Layer Transistor by the Selective Fluorination of a Graphene Film. Small, 2014. 10, No. 5, 989–997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top