跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳東祐
研究生(外文):Tung Yu Wu
論文名稱:研究鈰鈦氧化層作為感測膜在EIS生物感測器的應用
論文名稱(外文):Development of CeTixOy sensing membranes for EIS biosensors
指導教授:李仲益李仲益引用關係
指導教授(外文):C. Y. Li
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:81
中文關鍵詞:鈰鈦氧化層
外文關鍵詞:CeTixOy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文我們探討,濺鍍機沉積出來的鈰鈦氧化層作為EIS感測膜(RF濺鍍瓦數為100),再經由快速熱退火30秒下進行四種不同的溫度(600°С、700°С、800°С、900°С),經由實驗後我們發現鈰鈦氧化層在100濺鍍瓦數以及700°С的回火溫度下有較大的感測度(73 mV/pH)、較低的時漂現象(0.496 mV/hr)與遲滯現象(13.6 mV),不但感測度高且穩定。
我們將此結果應用在大腸癌基因的檢測,使用GPS以共價鍵的形式固定我們的大腸癌基因並進行量測,比較有無突變基因的電量變化。結果我們發現無突變基因較突變基因的結合率高。未來我們將以改善固定化方式與提升檢測準確度為我們研究的方向。期望此感測器在生物臨床檢驗上有更多的延伸應用。
為了提升在基因量測上的準確率,我們測試另一種EOHOS結構來量測,發現當有加入偏壓的時候,感測度有大量的提升,未來將會對這個結構有更多的研究。
In this thesis, we use sputter (RF power 100) to prepare cerium titanium oxide for the membrane of EIS sensor. Then annealed four temperatures (600°С、700°С、800°С、900°С) for thirty secs. By experiment we found out that CeTixOy sputter power 100 with RTA 700°С have higher sensitivity, lower drift rate and lower hysteresis, not only have high sensitivity but also stability.
We use this result for sensing colorectal cancer gene. We use GPS to fix colorectal cancer gene as covalent bonds and measurement then compare the charge shift between normal and mutant gene. It turns out that normal gene have higher combined rate. The future work is to improve the immobilized and enhance detection accuracy. Hope this sensor can have more extended application on biological clinical laboratory.
In order to improve the accuracy of gene measurement, we tested the EOHOS structure. It turns out that when we added bias on the device, the sensitivity has a lot of increasing. In the future we will have more research on this EOHOS.
Contents
指導教授推薦書
口試委員審定書
致謝 iii
摘要 iv
Abstract v
Contents vi
Figure caption ix
Table caption xii
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Motivation and Objective 3
1.3 EIS and ISFET 4
Chapter 2 6
Theory Description 6
2.1 EIS structure 6
2.2 Site-binding model 7
2.3 pH-ISFET operation mechanism 12
Chapter 3 17
Physical and Electrical Properties of CeTixOy/Si EIS structure 17
3.1 Material 17
3.2 RF sputtering 18
3.3 The fabrication process of EIS sensor 19
3.4 Physical properties of sensing membrane 20
3.4.1 XRD of CeTixOy film analysis 20
3.4.2 AFM of CeTixOy film analysis 20
3.4.3 XPS of CeTixOy film analysis 21
3.5 Sensing characteristics of EIS structure 22
3.5.1 Sensitivity of sensing membrane 22
3.5.2 Drift of sensing membrane 23
3.5.3 Hysteresis of sensing membrane 24
Chapter 4 38
Ce2TiO5 EIS structure for biosensor application 38
4.1 Introduction 38
4.2 Method of immobilization 40
4.3 Material and method 42
4.3.1 Colorectal cancer 42
4.3.2 Reagents 42
4.3.3 GPS 43
4.3.4 DNA immobilization and Experiment flow 43
4.4 Result and discussion 45
Chapter 5 51
Electrolyte-Oxide-High-k-Oxide-Semiconductor 51
5.1 Introduction 51
5.2 The fabrication process of EOHOS sensor 51
5.3 Sensitivity of sensing membrane 52
5.4 Summary 54
Chapter 6 60
Conclusion and Future Work 60
6.1 Conclusions 60
6.2 Future Works 61
Reference 62


Figure caption
Fig. 1- 1 The picture shows the Schematic cross-section of the ISFET. 5
Fig. 1- 2 Comparison of EIS and ISFET structures. 5
Fig. 2-1 Equivalent capacitance of the EIS structure. 14
Fig. 2- 2 Basic and multi-phase diagram of EIS structure. 14
Fig. 2- 3 Typical C-V curves for electrolyte-SiO2-Si EIS structure. Silicon dioxide thickness is 560Å on a (100) 10Ω-cm p-type. 15
Fig. 2- 4 Schematic representation of the site binding model. 15
Fig. 2- 5 Experimental results of the surface potential ( ) on the SiO2 surface, using the theoretical parameters pHpzc=2.2, β=0.14, pKa=5.7, pKb=1.3, Ns=5×1014 cm2 and CDL=20 μF/cm2. 16
Fig. 2- 6 Experimental results of the threshold voltage variation of the Al2O3 gate ISFET, using the theoretical parameters pHpzc=8, β=4.8, pKa=10, pKb=-6, Ns=8×1014 cm2 and CDL=20 μF/cm2. 16
Fig. 3-1 Schematic diagram of the self-designed RF sputtering system. 26
Fig. 3-2 EIS structure with CeTixOy sensing membrane. 27
Fig. 3- 3 Flow chart of CeTixOy EIS process. 28
Fig. 3-4 XRD analysis of Ce2TiO5 films with different annealing temperatures. 29
Fig. 3-5 XRD analysis of CeTiO3 films with different annealing temperatures. 29
Fig. 3-6 3x3μm AFM three domain image of Ce2TiO5 film with 600°С RTA (Rms=0.847 nm). 30
Fig. 3-7 3x3μm AFM three domain image of CeTiO3 film with 700°С RTA (Rms=3.610 nm). 30
Fig. 3-8 XPS spectra of the corresponding (a) Ce 3d, (b) Ti 2p, (c) O 1s energy levels of Ce2TiO5 sensing film annealed at various temperatures 31
Fig. 3-9 XPS spectra of the corresponding (a) Ce 3d, (b) Ti 2p, (c) O 1s energy levels of CeTiO3 sensing film annealed at various temperatures 31
Fig. 3-10 C-V curves of Ce2TiO5 EIS RTA at 600°C for all standard pH buffer solution. 32
Fig. 3-11 Extracted response voltages for varied pH with fitting the sensitivity and linearity of Ce2TiO5 and anneal with 600°C. 32
Fig. 3-12 C-V curves of CeTiO3 EIS RTA at 700°C for all standard pH buffer solution. 33
Fig. 3-13 Extracted response voltages for varied pH with fitting the sensitivity and linearity of CeTiO3 and anneal with 700°C. 33
Fig. 3-14 Drift rates of Ce2TiO5 layer after RTA at different temperatures. 34
Fig. 3-15 Drift rates of CeTiO3 layer after RTA at different temperatures. 35
Fig. 3-16 Hysteresis voltages of Ce2TiO5 on various RTA temperatures. 36
Fig. 3-17 Hysteresis voltages of CeTiO3 on various RTA temperatures. 36
Fig. 4-1 Structure formula of GPS. 47
Fig. 4-2 Scheme of the elementary activation reaction. 47
Fig. 4-4 The C-V curve of EIS structure for sample A reaction. 48
Fig. 4-5 The detection result of sample B. 49
Fig. 4-7 The detection result of sample C. 50
Fig. 4-8 The C-V curve of EIS structure for sample C reaction. 50
Fig. 5-1 EOHOS structure. 55
Fig. 5-2 EOHOS device structure. 55
Fig. 5-3 The C-V curves of EOHOS structure without bias. 56
Fig. 5-4 Sensitivity and linearity of EOHOS structure without bias. 56
Fig. 5-5 The C-V curves of EOHOS structure with bias 10V. 57
Fig. 5-6 Sensitivity and linearity of EOHOS structure without bias 57
Fig. 5-7 The C-V curve shift after added bias 10V. 58
Fig. 5-8 The C-V curves of EOHOS structure with bias -10V. 58
Fig. 5-9 Sensitivity and linearity of EOHOS structure without bias. 59
Fig. 5-10 The C-V curve shift after added bias -10V. 59


Table caption
Table. 3-1 Deposition conditions of CeTixOy thin film using RF sputtering system. 26
Table. 3-2 Sensitivity of Ce2TiO5 and CeTiO3 thin film after different RTA temperatures. 34
Table. 3-3 Drift of Ce2TiO5 and CeTiO3 thin film after different RTA temperatures. 35
Table. 3-4 Hysteresis of Ce2TiO5 and CeTiO3 thin film after different RTA temperatures. 37
Table. 4- 1 Data on ENFETs developed. 46
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng., vol. 17 , pp. 70–71, 1970.
[2] P. Bergveld, “Development, operation and application of the ion sensitive field effect transistor as a tool fro electrophysiology,” IEEE Trans. Biomed. Eng., BME-19, pp. 342, 1972.
[3] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., 70, pp. 1807, 1974.
[4] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects,” IEEE Trans. Electron Devices, ED-26, pp. 1805, 1979.
[5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures,” Ph.D. Thesis, Enschede, 1982.
[6] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng. BME-21 (1974) 485–487.
[7] S. Nakamoto, N. Ito, T. Kuriyama, J. Kimura, “A lift-off method for patterning enzyme-immobilized membranes in multibiosensors,” Sens. Actuators 1 13 (1988) 165–172.
[8] K. A. Yusof, N. I. M. Noh, S. H. Herman, A. Z. Abdullah, M. Zolkapli, W. F. H. Abdullah, "pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor," Control and System Graduate Research Colloquium (ICSGRC), 2013 IEEE 4th , vol., no., pp.132,135, 19-20 Aug. 2013.
[9] S. Jamasb, S. Collins, R.L. Smith, “A physical model for drift in pH ISFETs,” Sens. Actuators, B 49 (1998) 146–155.
[10] Hung-Kwei Liao, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun and Shen-Kan Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sensors and Actuators B, vol. 65, pp. 23-25, 2000.
[11] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, pp. 367-370, 1992.
[12] J. Y. Oh, H. J. Jang, W. J. Cho, M. Saif Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, “Sens. Actuators, B, vol. 171-172. pp. 238-243, 2012.
[13] H. V. D. Vlekkert, L. Bousse and N. D. Rooij, “The temperature dependence of the surface potential at the Al2O3/electrolyte interface,” J. Of Colloid and Interface Science, vol. 122, pp. 336-345, 1988.
[14] A. Garde, J. Alderman and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sensors and Actuators B, vol. 26-27, pp. 341-344, 1995.
[15] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, pp. 75-88, 1985.
[16] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988.
[17] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, pp. 367-370, 1992.
[18] T. M. Pan, C. W. Wang, S. Mondal, Y. H. Chang, “Effect of Titanium Content on the Sensing and Impedance Characteristics of High‑κ TbTixOy Electrolyte−Insulator− Semiconductor pH Sensors, ”J. Phys. Chem., vol 118. pp 4501-4508, 2014.
[19] P. C. Yao, J. L. Chiang, M. C. Lee,” Application of solegel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci., vol 28. pp 47-54, 2014.
[20] T. M. Pan, C. W. Lin, “Structural and Sensing Characteristics of Dy2O3 and Dy2TiO5 Electrolyte-Insulator-Semiconductor pH Sensors, ”J. Phys. Chem., vol 114. pp 17914-17919, 2010.
[21] L.B. Chang, H.H.Ko,Y.L. Lee, C.S. Lai, C.Y.Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, pp. 330-332, 2006.
[22] T. M. Pan, P. Y. Liao, K. Y. Chang, Lifeng Chi, “Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte-insulator semiconductor for bio-sensing applications,” Electrochim. Acta, vol. 89, no. 1, pp. 798-806, 2013.
[23] T. M. Pan, M. D. Huang, C. W. Lin, M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensor,” Sensors and Actuators B, Vol. 144, pp.139-145, 2010.
[24] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 angstrom,” IEEE Electron. Device Lett., vol. 21, pp. 341-343, 2000.
[25] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, “High ε gate dielectrics Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett., vol. 77, pp. 130-132, 2000.
[26] S. M. SZE, Physics of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985.
[27] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore.
[28] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sensors and Actuators B, vol. 6, pp. 315-318, 1992.
[29] T. M. Pan, C. W. Wang, Y. S. Huang, W. H. Weng, S. T. Pangc, “Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors,” J. Electrochem. Soc., vol. 162, pp B83-B88, 2015.
[30] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor”, Sensors and Actuators, B 65, pp. 23-25, 2000.
[31] Tsung-Wu Lin, Dhananjay Kekuda, Chih-Wei Chu, “Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor,” Biosensors and Bioelectronics, vol. 25, pp. 2706-2710, 2010.
[32] S. Caras and J. Janata, “Field effect transistors sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, Oct. 1980.
[33] Y. Miyahara, F. Matsu, T. Moriizumi, H. Matsuoka, I. Karube, S. Suzuki, Anal. Chem. Symposia Ser., vol. 17, pp. 501, 1983.
[34] A. Ahmadalinezhad, G. Wu, W. Keeler, A. Chen, “Fabrication and electrochemical study of carbon modified TiO2 nanowires, “Electrochem. Commun., vol 49. pp 25-29, 2014.
[35] M. Bäcker, D. Rakowski, A. Poghossian, M. Biselli, P. Wagner, M. J. Schöninga, “Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis, “J. Biotechnol., vol 163. pp 371-376, 2013.
[36] S.V. Dzyadevych, A.P. Soldatkin, A.V. El’skaya, C. Martelet, N. Jaffrezic-Renault, “Enzyme biosensors based on ion-selective field-effect transistors,” Anal. Chem., vol. 568, pp. 248-258, 2006.
[37] J.F. Kennedy, J.M.S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987.
[38] J. H. T. Luong, A. Mulchandani, G.G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, pp. 310–316, 1988.
[39] T. Togawa, T. Tamura, P.A. Oberg, “Biomedical Transducers and Instruments,” CRC Press, New York, 1997.
[40] M. S. Doscher and F. M. Richards, “The activity of an enzyme in the crystalline state,” J. Biol. Chem., vol. 238, no. 7, pp.2399-2406, Jul. 1963.
[41] J.H.T. Luing, A. Mulchandani, G.G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, pp. 310-316, 1988.
[42] R. A. messing, “Adsorption and inorganic bridge formations,” Methods in enzymology, vol. 44, no. C, pp. 148-169, 1976
[43] K. F. O’Driscoll, “Techniques of enzyme entrapment in gels,” Methods in Enzymol., vol. 44, no. C, pp. 169-183, 1976.
[44] T. C. hang, Guisepp-Elie, a, “Frequcy dependent and characterization of DNA immobilization and hybridization,” Biosensore and Bioelectronics, vol. 19, no. 11, pp. 1537-1548, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top