|
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng., vol. 17 , pp. 70–71, 1970. [2] P. Bergveld, “Development, operation and application of the ion sensitive field effect transistor as a tool fro electrophysiology,” IEEE Trans. Biomed. Eng., BME-19, pp. 342, 1972. [3] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., 70, pp. 1807, 1974. [4] W. M. Siu and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects,” IEEE Trans. Electron Devices, ED-26, pp. 1805, 1979. [5] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures,” Ph.D. Thesis, Enschede, 1982. [6] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement,” IEEE Trans. Biomed. Eng. BME-21 (1974) 485–487. [7] S. Nakamoto, N. Ito, T. Kuriyama, J. Kimura, “A lift-off method for patterning enzyme-immobilized membranes in multibiosensors,” Sens. Actuators 1 13 (1988) 165–172. [8] K. A. Yusof, N. I. M. Noh, S. H. Herman, A. Z. Abdullah, M. Zolkapli, W. F. H. Abdullah, "pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor," Control and System Graduate Research Colloquium (ICSGRC), 2013 IEEE 4th , vol., no., pp.132,135, 19-20 Aug. 2013. [9] S. Jamasb, S. Collins, R.L. Smith, “A physical model for drift in pH ISFETs,” Sens. Actuators, B 49 (1998) 146–155. [10] Hung-Kwei Liao, Jung-Chuan Chou, Wen-Yaw Chung, Tai-Ping Sun and Shen-Kan Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sensors and Actuators B, vol. 65, pp. 23-25, 2000. [11] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, pp. 367-370, 1992. [12] J. Y. Oh, H. J. Jang, W. J. Cho, M. Saif Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, “Sens. Actuators, B, vol. 171-172. pp. 238-243, 2012. [13] H. V. D. Vlekkert, L. Bousse and N. D. Rooij, “The temperature dependence of the surface potential at the Al2O3/electrolyte interface,” J. Of Colloid and Interface Science, vol. 122, pp. 336-345, 1988. [14] A. Garde, J. Alderman and W. Lane, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sensors and Actuators B, vol. 26-27, pp. 341-344, 1995. [15] J.L. Diot, J. Joseph, J.R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, pp. 75-88, 1985. [16] P. Bergveled and A. Sibbald, “Analytical and biomedical applications of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988. [17] A.S. Poghossian, “The super-nernstian pH sensitivity of Ta2O5 gate ISFETs,” Sensors and Actuators B, pp. 367-370, 1992. [18] T. M. Pan, C. W. Wang, S. Mondal, Y. H. Chang, “Effect of Titanium Content on the Sensing and Impedance Characteristics of High‑κ TbTixOy Electrolyte−Insulator− Semiconductor pH Sensors, ”J. Phys. Chem., vol 118. pp 4501-4508, 2014. [19] P. C. Yao, J. L. Chiang, M. C. Lee,” Application of solegel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci., vol 28. pp 47-54, 2014. [20] T. M. Pan, C. W. Lin, “Structural and Sensing Characteristics of Dy2O3 and Dy2TiO5 Electrolyte-Insulator-Semiconductor pH Sensors, ”J. Phys. Chem., vol 114. pp 17914-17919, 2010. [21] L.B. Chang, H.H.Ko,Y.L. Lee, C.S. Lai, C.Y.Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, pp. 330-332, 2006. [22] T. M. Pan, P. Y. Liao, K. Y. Chang, Lifeng Chi, “Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte-insulator semiconductor for bio-sensing applications,” Electrochim. Acta, vol. 89, no. 1, pp. 798-806, 2013. [23] T. M. Pan, M. D. Huang, C. W. Lin, M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensor,” Sensors and Actuators B, Vol. 144, pp.139-145, 2010. [24] Y. H. Wu, M. Y. Yang, A. Chin, W. T. Chen and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 angstrom,” IEEE Electron. Device Lett., vol. 21, pp. 341-343, 2000. [25] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, “High ε gate dielectrics Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett., vol. 77, pp. 130-132, 2000. [26] S. M. SZE, Physics of Semiconductor Devices, 2nd Edition, Central Book Company, Taipei, Taiwan, 1985. [27] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore. [28] L. K. Meixner and S. Koch, “Simulation of ISFET operation based on the site-binding model,” Sensors and Actuators B, vol. 6, pp. 315-318, 1992. [29] T. M. Pan, C. W. Wang, Y. S. Huang, W. H. Weng, S. T. Pangc, “Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors,” J. Electrochem. Soc., vol. 162, pp B83-B88, 2015. [30] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor”, Sensors and Actuators, B 65, pp. 23-25, 2000. [31] Tsung-Wu Lin, Dhananjay Kekuda, Chih-Wei Chu, “Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor,” Biosensors and Bioelectronics, vol. 25, pp. 2706-2710, 2010. [32] S. Caras and J. Janata, “Field effect transistors sensitive to penicillin,” Anal. Chem., vol. 52, no. 12, pp. 1935–1937, Oct. 1980. [33] Y. Miyahara, F. Matsu, T. Moriizumi, H. Matsuoka, I. Karube, S. Suzuki, Anal. Chem. Symposia Ser., vol. 17, pp. 501, 1983. [34] A. Ahmadalinezhad, G. Wu, W. Keeler, A. Chen, “Fabrication and electrochemical study of carbon modified TiO2 nanowires, “Electrochem. Commun., vol 49. pp 25-29, 2014. [35] M. Bäcker, D. Rakowski, A. Poghossian, M. Biselli, P. Wagner, M. J. Schöninga, “Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis, “J. Biotechnol., vol 163. pp 371-376, 2013. [36] S.V. Dzyadevych, A.P. Soldatkin, A.V. El’skaya, C. Martelet, N. Jaffrezic-Renault, “Enzyme biosensors based on ion-selective field-effect transistors,” Anal. Chem., vol. 568, pp. 248-258, 2006. [37] J.F. Kennedy, J.M.S. Cabral, in: H.J. Rehm, G. Reed (Eds.), Biotechnology, 7a, VCH Publishers, Germany, pp. 349–404, 1987. [38] J. H. T. Luong, A. Mulchandani, G.G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, pp. 310–316, 1988. [39] T. Togawa, T. Tamura, P.A. Oberg, “Biomedical Transducers and Instruments,” CRC Press, New York, 1997. [40] M. S. Doscher and F. M. Richards, “The activity of an enzyme in the crystalline state,” J. Biol. Chem., vol. 238, no. 7, pp.2399-2406, Jul. 1963. [41] J.H.T. Luing, A. Mulchandani, G.G. Guilbault, “Developments and applications of biosensors,” Trends Biotechnol., vol. 6, pp. 310-316, 1988. [42] R. A. messing, “Adsorption and inorganic bridge formations,” Methods in enzymology, vol. 44, no. C, pp. 148-169, 1976 [43] K. F. O’Driscoll, “Techniques of enzyme entrapment in gels,” Methods in Enzymol., vol. 44, no. C, pp. 169-183, 1976. [44] T. C. hang, Guisepp-Elie, a, “Frequcy dependent and characterization of DNA immobilization and hybridization,” Biosensore and Bioelectronics, vol. 19, no. 11, pp. 1537-1548, 2004.
|