跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:嘎盧布拉比爾
研究生(外文):Prabir Garu
論文名稱:使用溶膠-凝膠合成開發高介電常數稀土氧化物材料的生物感測薄膜的物理和電性之特性
論文名稱(外文):Development of physical and electrical characterization of high-k rare-earth oxide material based bio-sensing membrane using sol-gel synthesis
指導教授:潘同明
指導教授(外文):T. M. Pan
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:103
中文關鍵詞:no
外文關鍵詞:High-k oxide materialspH-EIS sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究了LaxTiyOz高介電常數有機材料作為(EIS)感測器的傳感器,使用溶膠凝膠合成法在0.2M條件下製備,隨後在800℃下在O2環境中進行退火 30分鐘。
為了避免柵極絕緣體的水化層的產生,並減少La-矽酸鹽的形成,所以我們在La2O3傳感器中摻雜了Ti。
分別通過XRD,AFM,XPS和SIMS分析,研究了傳感器的結構特性、表面形態、化學形態和材料組成。
透過HP 4284A LCR儀器在室溫下使用Ag / AgCl作為參考電極去量測EIS感測器元件的(C-V)曲線進而求出LaxTiyOz的pH靈敏度,磁滯電壓和漂移率。
在p型半導體上使用高介電質材料LaTi2O5作為傳感器表現出較高的表面粗糙度(Rrms)為1.07nm、pH靈敏度為70.60mV / pH,並且有極高的線性度為0.999,與LaxTiyOz中La和Ti的其他組合相比,此感測器有較低的磁滯電壓 和漂移速率分別為3.74 mV和0.95 mV / hr。
有這樣的結果歸因於傳感器中有最佳的La 和Ti摻雜比例,導致抑制吸濕,而提高結晶度。
我們還製造了電解質 - 氧化物 - 納米粒子 - 氧化物半導體(EONOS)結構的記憶生物傳感器其中使用AuNP作為電荷捕獲層。 在這裡,我們在不同的旋塗條件下製造了兩個器件,並在施加應力偏差之前和之後測量了它們的靈敏度。
施加應力偏壓後,兩種裝置的靈敏度都有了很大的提高。 測量漂移速率和滯後效應也可以了解設備的穩定性。 樣品1不僅具有更好的靈敏度,而且與樣品-2相比具有較低的漂移率和較低的滯後電壓。 通過XRD,AFM和SIMS分析研究了EONOS結構的結構,形態和組成。
SIMS深度剖面和AFM圖像證實AuNPs的形成。 將來,我們將對這種EONOS結構作為記憶生物傳感器進行更多的研究。
In this thesis, we investigated the LaxTiyOz high dielectric constant organic materials as a sensing membrane of the electrolyte- insulator- semiconductor (EIS) sensors using sol gel synthesis have been fabricated under the 0.2 M condition with subsequent annealing at 800 oC in O2 ambient for 20 min. In order to avoid the generation of hydration layer of the gate insulator and reduce the formation of La- silicate, we doped Ti in La2O3 sensing membranes. The structural properties, surface morphology, chemical states, and materials composition of the sensing films have been investigated by XRD, AFM, XPS and SIMS analysis respectively. The pH sensitivity, hysteresis voltage and drift rate of the LaxTiyOz were measured by capacitance– voltage (C-V) curves of the EIS sensor devices with Ag/AgCl reference electrode by HP 4284A LCR meter at room temperature. To use the LaTi2O5 high-k sensing film on bare p-type semiconductor exhibited the higher surface roughness (Rrms) of 1.07 nm, pH sensitivity of 70.60 mV/pH, better linearity 0.999, and the reliability of the sensor is a lower hysteresis voltage and drift rate 3.74 mV and 0.95 mV/hr respectively, compared with other combination of La and Ti in LaxTiyOz. This finding behavior attribute to the optimal La/Ti ratio content in sensing membrane leading to inhibit the moisture absorption hence improving the crystallinity.
We also fabricated Electrolyte- Oxide- Nano particle- Oxide- Semiconductor (EONOS) structure as a memory biosensor in which AuNP was used as the charge trapping layer. Here, we fabricated two devices at different spin coating conditions and measured their sensitivity before and after applying stress bias. After applying stress bias the sensitivity of both the devices has increased a lot. The drift rate and hysteresis effect also measured to know the device stability. Sample-1 exhibited not only better sensitivity but also have lower drift rate and lower hysteresis voltage compared to the sample-2. The structural, morphological and composition of the EONOS structure has been investigated by XRD, AFM and SIMS analysis respectively. SIMS depth profile and AFM image confirm the formation of AuNPs. In the future, we will have more research on this EONOS structure as a memory bio-sensor.
Recommendation letter from the thesis advisor………………………..
Thesis oral defence committee certification…………………………….
Acknowledgements……………………………………………………..iii
Abstract in Chinese……………………………………………………..iv
Abstract……………………………………………………….................vi
Contents……………………………………………………..................vii
Figure caption……………………………………………......................x
List of Table……………………………...……………………………..xiv
Chapter 1: Introduction……………………………………………….-1-
1.1 Background of Research………………………………………-1-
1.2 Motivation and objective…………………………....................-2-
1.3 EIS and ISFET………………………………………………...-4-
1.4 Organization of this thesis……………………………………..-5-
Chapter 2: Theory Description……………………………………….-7-
2.1 EIS structure………………………….....................................-7-
2.2 Site binding model…………………………………………....-9-
Chapter 3: Physical and Electrical properties of LaxTiyOz/Si- EIS structures……………………………………………………………...-18-
3.1 Material…………………………………………..………......-18-
3.2 Sol-gel process……………………………………………….-19- 3.3 Spin coating……………………………..................................-21-
3.4 The fabrication process of EIS sensor………………………..-26-
3.5 Physical properties of sensing membrane……………………-30-
3.5.1 XRD analysis…………………………………………...-30-
3.5.2 AFM analysis…………………………………………..-31-
3.5.3 XPS analysis…………………………………………..-35-
3.5.3 SIMS analysis………………………………………..... -40-
3.6 Electrical characterization of EIS structure…………………..-44-
3.6.1 Sensing mechanism………………………………….....-44-
3.6.2 Sensitivity of sensing membranes...…………………..-45-
3.6.3 Drift characteristics of the sensing film……………......-49-
3.6.4 Hysteresis characteristics of the sensing film……….....-51-
3.6.5 Summary…………………………………………….....-55-
Chapter 4: Electrolyte-Oxide-Nano particle-Oxide-Semiconductor
……………….…………..……………………………………………-56-
4.1 Introduction…………………………………..........................-56-
4.2 The fabrication process of EONOS sensor…...……………...-57-
4.2.1 Silanization…………………………………………......-57-
4.2.2 Gold nanoparticle deposition………..............................-58-
4.2.3 Gate oxide deposition and device fabrication…………..-59-
4.3 Physical characterization……………………………………..-61-
4.3.1 XRD analysis…………………………………………...-61-
4.3.2 AFM analysis…………………………………………..-62-
4.3.3 SIMS analysis………………………………………......-63-


4.4 Electrical characterization…………………………………..-65-
4.4.1 Sensitivity of sensing membranes...………………........-65-
4.4.2 Drift characteristics of the sensing films...………..........-73-
4.4.3 Hysteresis characteristics of the sensing films…….....-74-
4.5 Summary…………….………………………………………-76-
Chapter 5: Conclusion and scope of future work.……………..…...-77-
5.1 Conclusion...…….…………………………………………...-77-
5.2 Future work…….…………..………………………………...-78-
References…………..…………………………….………...………...-79-

Figure caption
Figure 1-1: The schematic cross-section of the ISFET. ……………….-5-
Figure 1-2: Comparison of EIS and ISFET structures ………………...-5-
Figure 2-1: Equivalent capacitance of the EIS structure …………......-14-
Figure 2-2: Basic and multi-phase diagram of EIS structure ………...-15-
Figure 2-3: Typical C-V curves for electrolyte-SiO2-Si EIS structure..-15-
Figure 2-4: Schematic representation of the site binding model …..…-16-
Figure 2-5: Experimental results of the surface potential (Ψ) on the SiO2
surface, using the theoretical parameters: pHpzc=2.2, β=0.14, pKa=5.7,
pKb=1.3, Ns= 5x1014
cm
-2
and CDL= 20 µF/cm2 …….……...………....-16-
Figure 2-6: Experimental results of the threshold voltage variation of the
ISFET with Al2O3 gate, using the theoretical parameters: pHpzc=8, β=4.8,
pKa=10, pKb=-6, Ns=8x1014
cm
-2
and CDL=20µF/cm-2 ………………..-17-
Figure 3-1: sol-gel process……………………………………………-24-
Figure 3-2: Four key stages of spin coating technique.……….…...….-25-
Figure 3-3: Relationship between film thickness and spin speed….....-25-
Figure 3-4: Chart classifying five different types of gels that are relevant
in sol– gel synthesis of materials………………………………………-28-
Figure 3-5: The EIS structure and process flow……………..………..-29-
Figure 3-6: Process flow of biosensor based on EIS structure. ………-29-
Figure 3-7: XRD analysis of LaxTiyOz films annealed at 800°С ….....-31-
Figure 3-8: Schematic diagram of an atomic force microscope………-32-
Figure 3-9: 3x3 µm 2D and 3D AFM image of La2O3 film……….….-33-
Figure 3-10: 3x3 µm 2D and 3D AFM image of LaTiO3 film…….….-34-
Figure 3-11: 3x3 µm 2D and 3D AFM image of LaTi2O5 film…....….-34-
Figure 3-12: 3x3 µm 2D and 3D AFM image of La2TiO5 film…….....-35-
Figure 3-13: 3x3 µm 2D and 3D AFM image of La2Ti2O7 film…....…-35-
Figure 3-14: XPS spectra of the corresponding (a) La 3d, (b) O 1s energy
levels of La2O3 film annealed at 800 °С…………………………….…-37-
Figure 3-15: XPS spectra of the corresponding (a) La 3d, (b) Ti 2p, (c) O
1s energy levels of LaTiO3 film annealed at 800 °С…………………..-37-
Figure 3-16: XPS spectra of the corresponding (a) La 3d, (b) Ti 2p, (c) O
1s energy levels of LaTi2O5 film annealed at 800 °С………………….-38-
Figure 3-17: XPS spectra of the corresponding (a) La 3d, (b) Ti 2p, (c) O
1s energy levels of La2TiO5 film annealed at 800 °С…………….…..-39-
Figure 3-18: XPS spectra of the corresponding (a) La 3d, (b) Ti 2p, (c) O
1s energy levels of La2Ti2O7 film annealed at 800 °С………………...-40-
Figure 3-19: SIMS depth profile for La2O3 film annealed at 800
°С………………………………………………………………………-41-
Figure 3-20: SIMS depth profile for LaTiO3 film annealed at 800
°С………………………………………………………………………-42-
Figure 3-21: SIMS depth profile for LaTi2O5 film annealed at 800
°С………………………………………………………………………-42-
Figure 3-22: SIMS depth profile for La2TiO5 film annealed at 800
°С……………………………………………………………………....-43-
Figure 3-23: SIMS depth profile for La2Ti2O7 film annealed at 800
°С………………………………………………………………………-43-
Figure 3-24: (a) C-V curves and (b) linearity for the La2O3 sensing
membrane……………………………………………………………...-47-
Figure 3-25: (a) C-V curves and (b) linearity for the LaTiO3 sensing
membrane……………………………………………………………...-47-
Figure 3-26: (a) C-V curves and (b) linearity for the LaTi2O5 sensing
membrane……………………………………………………………...-48-
Figure 3-27: (a) C-V curves and (b) linearity for the La2TiO5 sensing
membrane……………………………………………………………...-48-
Figure 3-28: (a) C-V curves and (b) linearity for the La2Ti2O7 sensing
membrane……………………………………………………………...-49-
Figure 3-29: Drift rates of the LaxTiyOz sensing membranes……..…..-51-
Figure 3-30: Hysteresis curve of the La2O3 sensing membrane……....-53-
Figure 3-31: Hysteresis curve of the LaTiO3 sensing membrane…..…-53-
Figure 3-32: Hysteresis curve of the LaTi2O5 sensing membrane…...-54-
Figure 3-33: Hysteresis curve of the La2TiO5 sensing membrane……-54-
Figure3-34: Hysteresis curve of the La2Ti2O7 sensing membrane…...-55-
Figure 4-1: Silanization and AuNPs immobilization…………………-58-
Figure 4-2: EONOS device structure…………………………………-60-
Figure 4-3: XRD analysis of the devices annealed at 400°С…………-61-
Figure 4-4: 3x3 µm AFM surface image of sample- 1…….……….…-62-
Figure 4-5: 3x3 µm AFM surface image of sample- 2…….………….-63-
Figure 4-6: SIMS depth profile of sample-1………………………….-64-
Figure 4-7: SIMS depth profile of sample-2………………………….-64-
Figure 4-8: (a) The C-V curves and (b) linearity of sample-1 without
bias…………………………………………………………………….-67-
Figure 4-9: (a) The C-V curve shift after applying bias (b) C-V curves
and (c) linearity of sample-1 with bias +15 V…………………………-68-
Figure 4-10: (a) The C-V curve shift after applying bias (b) C-V curves
and (c) linearity of sample-1 with bias -15 V………………………….-69-
Figure 4-11: (a) The C-V curves and (b) linearity of sample-2 without
bias…………………………………………………………………….-70-
Figure 4-12: (a) The C-V curve shift after applying bias (b) C-V curves
and (c) linearity of sample-2 with bias +15 V………………………....-71-
Figure 4-13: (a) The C-V curve shift after applying bias (b) C-V curves
and (c) linearity of sample-2 with bias -15 V……………………….…-72-
Figure 4-14: Drift rates of the EONOS devices at pH7 for 12h..…-73-
Figure 4-15: Hysteresis curves of the EONOS devices at the pH
loop7→4→7→10→7 for 1500 sec…………………………………....-75-


List of Table
Table 3-1: Sensitivity, linearity, hysteresis and drift of the sensing
membranes.…........................................................................................-52-
Table 4-1: Spin coating parameters....................................................-59-
Table 4-2: Deposition condition of Al2O3 thin film using RF
sputtering................................................................................................-60-
Table 4-3: Sensitivity and linearity of the samples before and after stress
bias.…………………………...……………………………………….-67-
Table 4-4: Drift, hysteresis and surface roughness of the samples.…...-75-
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement, “IEEE Trans. Biomed. Eng., vol.17, no. 1, pp. 70-71, Jan. 1970.
[2] D. E. Yates, S. Levine and T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 1, no.0, pp. 1807-1808, Nov. 1973.
[3] W. M. Siu and R. S. C. Cobbold, “Basic properties of the Electrolyte- SiO2-Si system: Physical and Theoretical aspects,” IEEE Trans. on Electron Devices, vol. 26, no. 11, pp. 1805-1815, Nov. 1979.
[4] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures,” Ph.D Thesis, Enschede, 1982.
[5] K. A. Yusof, N. I. M. Noh, S. H. Herman, A. Z. Abdullah, M. Zolkapli, and W. F. H. Abdullah, “pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor,” Control and System Graduate Research Colloquium (ICSGRC), 2013 IEEE 4th, pp.132-135, Aug. 2013.
[6] S. Jamasb, S. Collins, and R. L. Smith, “ A physical model for drift in pH ISFETs,” Sens. Actuators, B, vol. 49, no. 1-2, pp. 146-155, Jun. 1998.
[7] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, no.1, pp. 19–23, Feb. 2000.
[8] H. K. Liao, J. C. Chou, and W. Y. Chung, “Study of amorphous tin oxide thin films for ISFET applications,” Sens. Actuators, B, vol. 50, no.2, pp. 104–109, Jul. 1998.
[9] K. M. Chang, C. T. Chang, K.Y. Chao, and C. H. Lin, “A Novel pH-dependent Drift Improvement Method for Zirconium Dioxide Gated pH-Ion Sensitive Field Effect Transistors,” Sensor, vol. 10, no. 5 , pp. 4643-4654, May. 2010.
[10] B.T. Radhouane, B. Takayuki, O. Yutaka, and T. Yasutaka, “Tin doped indium oxide thin films: electrical properties”, J. Appl. Phys. vol. 83, no.5, pp. 2631–2645, Nov.1998.
[11] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sens. Actuators, B, vol. 65, no. 1-3, pp. 23-25, Jun. 2000.
[12] C. H. Kao, C. C. Chen, C. H. Huang, C. Y. Huang. C. J. Lin, and J. C. Ou, “Investigation of Ti-doped Gd2O3 charge trapping layer with HfO2 blocking oxide for memory application,” Thin Solid Films, vol. 520, no. 10, pp. 3857-3861, Mar. 2012.
[13] C. H. Kao, H. Chen, C. S. Lai, J. C. Wang, S. P. Lin, K. S. Chen, C. Y. Huang, and J. C. Ou, “Erbium oxide as pH-sensing membranes in extended gate field effect transistors,” Adv. Sci. Lett. 17, no-1, pp. 122-124, Oct. 2012.
[14] H. V. D. Vlekkert, L. Bousse, and N. D. Rooij, “ The temperature dependence of the surface potential at the Al2O3/electrolyte interface,” J. Colloid and Interface Science, vol. 122, no. 2, pp. 336-345, Apr. 1988.
[15] A. Garde, J. Alderman, and W. Lane, “ Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sens. and actuators, B, vol. 27, no. 1-3, pp. 341-344, Jun. 1995.
[16] J. L. Diot, J. Joseph, J. R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, no. 1-2, pp. 75-88, Oct. 1985.
[17] P. Bergveld and A. Sibbald, “Analytical and biomedical application of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988.
[18] A. S. Poghossian, “The super- nernstian pH sensitivity of Ta2O5 gate ISFET”, Sens. and Actuators, B, vol. 7, no. 1-3, pp. 367-370, Mar.1992.
[19] P. R. Barabash, R. S. C. Cobbold, and W. B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect-transistor (EISFETs),” IEEE Trans. on Electron Device, vol. 34, no. 6, pp. 1271-1282, Jun. 1987.
[20] A. Fog and R. P. Buck, “Electronic semiconducting oxides as pH sensors,” Sens. Actuators B, vol. 5, no. 2, pp. 137–146, Feb. 1984.
[21] S. Yoshida, N. Hara, and K. Sugimoto, “Development of a wide range pH sensor based on electrolyte-insulator-semiconductor structure with corrosion-resistant Al2O3-Ta2O5 and Al2O3-ZrO2 double-oxide thin films,” J. Electrochem. Soc., vol. 151, no. 3, pp. 53-58, Jan. 2004.
[22] C. S. Lai, C. M. Yang, and T. F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing,” Electrochem. Solid-State Lett., vol. 9, no. 3, pp. 90–92, Jan. 2006.
[23] L. B. Chang, H. H. Ko, Y. L. Lee, C.S. Lai, and C. Y. Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, no.4, pp. 330-332, Dec. 2006.
[24] T. M. Pan, P. Y. Liao, K. Y. Chang, and L. Chi, “Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte-insulator semiconductor for bio-sensing applications,” Electrochim. Acta, vol. 89, no. 1, pp. 798-806, Feb. 2013.
[25] T. M. Pan, M. D. Huang, C. W. Lin, and M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensor,” Sens. and Actuators, B, vol. 144, no. 1, pp.139-145, Jan. 2010.
[26] S. M. Sze, “Physics of Semiconductor Devices,” 2nd Edition, Central Book Company, Taipei, Taiwan, 1985.
[27] T. Pan, C. W. Wang, C. Y. Chen, and J. L. Her, “Impact of yttrium content and thermal annealing on the structural and sensing characteristics of YbYxOy sensing membranes”, J. Appl. Phys. vol. 119, no. 7, pp. 024110, Feb. 2016.
[28] M. Fanciulli, and G. Scarel, Rare Earth Oxide Thin Film: Growth, Characterization, and Applications, Springer, Berlin, 2007.
[29] G. He, and Z. Sun (Eds.), High-k Gate Dielectrics for CMOS Technology, Wiley-VCH Verlag GmbH & Co., Weinheim, Aug. 2012.
[30] C. Hu, M. D. McDaniel, A. Jiang, A. Posadas, A. A. Demkov, J. G. Ekerdt, and E. T. Yu, “A Low-Leakage Epitaxial High-k Gate Oxide for Germanium Metal-Oxide-Semiconductor Devices,” Mater. Interfaces, vol. 8, no. 8, pp. 5416–5423, Feb. 2016.
[31] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, “High gate dielectircs Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett., vol. 77, no. 1, pp. 130-132, May. 2000.
[32] Y. Guanghua, and S. Michael, “An Acetic Acid/Water Based Sol-Gel PZT Process I: Modification od Zr and Ti Alkoxides with Acetic Acid” J. Sol-Gel Sci. vol. 6, no. 1, pp.65-74, Jan.1996.
[33] D. Okpala, and V. Uche, “Sol-gel technique: A veritable tool for crystal growth,” Adv. Appl. Sci. Res., vol. 4, no. 1, pp. 506-510, Jan. 2013.
[34] A. E. Danks, S. R. Hall, and Z. Schnepp, “The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis”, Mater. Horiz., vol. 3, no. 2, pp. 9-112, Dec. 2015.
[35] D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, “High-mobility ultrathin semiconducting films prepared by spin coating”, Nature , vol. 428, no. 6980, pp. 299-303, Mar. 2004.
[36] M. D. Tyona, “A theoritical study on spin coating technique”, Adv. Mater. Res., vol. 2, no. 4, pp. 195-208, Apr. 2013.
[37] J. H. Lai, “An investigation of spin coating of electron resists”, Polym. Eng. Sci., vol. 19, no. 15, pp. 1117-1121, Nov. 1979.
[38] D. A. H. Hanaor, G. Trianni, and C. Sorrell, “Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film,” Surf. Coat. Tech., vol. 205, no. 12, pp. 3658-3664, Mar. 2011.
[39] B. T. Chen, “Investigation of the Solvent-Evaporation Effect on Spin Coating of Thin Films,” Polym. Eng. Sci., vol. 23, no. 7, pp. 399-403, May. 1983.
[40] A. G. Emslie, F. T. Bonner and L. G. Peck, "Flow of a Viscous Liquid on a Rotating Disk", J. Appl. Phys., vol. 29, no. 5, pp. 858-862, May. 1958.
[41] A. Mihi, M. Ocana, and H. Miguez, "Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media," Adv. Mat., vol. 18, no. 17, pp. 2244-2249, Sep. 2006.
[42] D. W. Schubert, and T. Dunkel, “Spin coating from molecular point of view: Its concentration regimes, Influence of molar of molar mass and distribution”, Mater. R es. Innov., vol. 7, no. 5, pp. 314-321, Oct. 2003.
[43] W. J. Daughton, and F. L. Givens, "An Investigation of the Thickness Variation of Spun-On Thin Films Commonly Associated with the Semiconductor Industry," J. Electrochem. Soc., vol. 129, no. 1, pp. 173-179, Jan. 1982.
[44] A. Munch, C. P. Please, and B. Wagner, “Spin coating of an evaporating polymer solution”, Phys. Fluids, vol. 23, no. 10, pp. 102101, Oct. 2011.
[45] C. C. Chang, C. L. Pai, W. C. Chen, and S. A. Jenekhe, “Spin coating of conjugated polymers for electronic and optoelectronic applications,” Thin Solid Films, vol. 479, no. 1-2, pp. 254-260, May. 2005.
[46] F. H. Chen, C. H. Chen, and T. M. Pan, “Structural and Electrical Characteristics of High-k Sm2TiO5 Gate Dielectrics for InGaZnO Thin-film Transistors,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 3, pp.1337-1342, Jun. 2015.
[47] C. H. Kao, S. Z. Chen, Y. Luo, W. T. Chiu, S. W. Chiu, C. Chen, C. Y. Lin, and H. Chen, “The influence of Ti doping and annealing on Ce2Ti2O7 flash memory devices”, Appl. Surf. Sci., vol. 396, no.1, pp. 1673–1677, Dec. 2016.
[48] C. S. Lee, S. K. Kim, and M. Kim, “Ion-Sensitive Field-Effect Transistor for Biological Sensing,” Sensors, vol. 9, no. 9, pp. 7111-7131, Aug. 2009.
[49] P. Bergveld, “ISFET theory and practice”, in IEEE Sensor Conference, Toronto, pp. 1-25, Oct. 2003.
[50] C. D. Fung, P.W. Cheung, and W.H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 8-18, Jan. 1986.
[51] T. M. Pan, and K.M. Liao, “Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-ISFET” Sens. Actuators, B, vol. 127, no.2, pp. 480-485, Nov. 2007.
[52] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore, Nov. 2002.
[53] B. Prasad, and R. Lal, “Capacitive Immunosensor Measurement System with a Lock in amplifier and Potentiostatic control by software”, Meas. Sci. Technol., vol. 10, no.11, pp. 1097-1104, Jul. 1999.
[54] M. Kuhn, “A quasi Static Technique for MOS C-V and surface state Measurements”, Solid-State Electron. vol. 13, no.6, pp. 873-885, Jun.1970.
[55] P. Bergveld, “Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology,” IEEE Trans. Electron Devices, vol. 19, no. 5, pp. 342-351, Sep. 1972.
[56] J. Chermiti, M. B. Ali, C. Dridi, M. Gonchar, N. J. Renoult, and Y. Korpan, “Site-binding model as a basis for numerical evaluation of analytical parameters of capacitance-biosensors for formaldehyde and methylamine detection”, Sens. Actuator B-Chem., vol. 188, pp. 824-830, Nov. 2013.
[57] T. W. Lina, D. Kekudaa and C.W. Chua, “Label-free detection of DNA using novel organic-based electrolyte-insulator semiconductor,” Biosens. Bioelectron., vol. 25, no. 12, pp. 2706-2710, Aug. 2010.
[58] H. J. Jang, and W. J. Cho, “High performance silicon-on-insulator based ion-sensitive field-effect transistor using high-k stacked oxide sensing membrane,” Appl. Phys. Lett, vol. 99, no. 4, pp. 043703, Jul. 2011.
[59] J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B-Chem., vol. 76, no.1-3, pp. 624-628, Jun. 2001.
[60] H. Scher, and E.W. Montroll “Anomolous transit-time deispersion in amorphous solids,” Phys. Rev. B, vol. 12, no. 6 pp. 2455-2477, Sep. 1975.
[61] T. M. Pan, C. W. Wang, W. H. Weng, and S. T. Pang, “Impact of titanium content and postdeposition annealing on the structural and sensing properties of TbTixOy sensing membranes,” J. Mater. Chem. C, vol. 2, no. 36, pp.7575-7582, Jul. 2014.
[62] P. O. Hahn, and M. Henzler, “The Si–SiO2 interface: correlation of atomic structure and electrical properties,” J. Vac. Sci. Techno. A, vol. 2, no. 2, pp. 574-583, Jun. 1984.
[63] G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang, “Effect of post-deposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100),” Surf. Sci., vol. 576, no. 1-3, pp. 67-75, Feb. 2005.
[64] L. Bousse, “Hysteresis in Al2O3 in gate ISFETs”, Sens. Actuators B, vol. 2, no. 2, pp.103-110, May.1990.
[65] R. Sardar, A. M. Funston, P. Mulvaney, and R.W. Murray, “Gold Nanoparticles: Past, Present, and Future” Langmuir,vol. 25, no. 24, pp. 13840– 13851, Jul. 2009.
[66] X. D. Hao, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress” Biosens. Bioelectron., vol. 23, no. 2, pp. 151–160, Sep. 2007.
[67] M. C. Daniel, and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev., vol. 104, no. 1, pp. 293–346, Jan. 2004.
[68] J. Zheng, Z. Zhu, H. Chen, and Z. Liu, “Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon,” Langmuir, vol. 16, no. 10, pp. 4409–4412, Apr. 2000.
[69] A. J. Haes, and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal Bioanal Chem., vol. 379, no. 7, pp. 920–930, Jul. 2004.
[70] S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev., vol.107, no. 11, pp. 4797–4862, Nov. 2007.
[71] E. Hutter, and J. H. Fendler, “exploitation of localized surface plasmon resonance,” Adv. Mater., vol. 16, no. 19, pp. 1685–1706, Oct. 2004.
[72] C. H. Lalander, Y. Zheng, S. Dhuey, S. Cabrini, and U. Bach, “DNA-directed self-assembly of gold nanoparticles onto nano-patterned surfaces: controlled placement of individual nanoparticles into regular arrays,” ACS Nano, vol. 4, no. 10, pp. 6153–6161, Oct. 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top