|
[1] P. Bergveld, “Development of an ion-sensitive solid state device for neurophysiological measurement, “IEEE Trans. Biomed. Eng., vol.17, no. 1, pp. 70-71, Jan. 1970. [2] D. E. Yates, S. Levine and T.W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 1, no.0, pp. 1807-1808, Nov. 1973. [3] W. M. Siu and R. S. C. Cobbold, “Basic properties of the Electrolyte- SiO2-Si system: Physical and Theoretical aspects,” IEEE Trans. on Electron Devices, vol. 26, no. 11, pp. 1805-1815, Nov. 1979. [4] L. Bousse, “The chemical sensitivity of electrolyte/insulator/ semiconductor structures,” Ph.D Thesis, Enschede, 1982. [5] K. A. Yusof, N. I. M. Noh, S. H. Herman, A. Z. Abdullah, M. Zolkapli, and W. F. H. Abdullah, “pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor,” Control and System Graduate Research Colloquium (ICSGRC), 2013 IEEE 4th, pp.132-135, Aug. 2013. [6] S. Jamasb, S. Collins, and R. L. Smith, “ A physical model for drift in pH ISFETs,” Sens. Actuators, B, vol. 49, no. 1-2, pp. 146-155, Jun. 1998. [7] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, no.1, pp. 19–23, Feb. 2000. [8] H. K. Liao, J. C. Chou, and W. Y. Chung, “Study of amorphous tin oxide thin films for ISFET applications,” Sens. Actuators, B, vol. 50, no.2, pp. 104–109, Jul. 1998. [9] K. M. Chang, C. T. Chang, K.Y. Chao, and C. H. Lin, “A Novel pH-dependent Drift Improvement Method for Zirconium Dioxide Gated pH-Ion Sensitive Field Effect Transistors,” Sensor, vol. 10, no. 5 , pp. 4643-4654, May. 2010. [10] B.T. Radhouane, B. Takayuki, O. Yutaka, and T. Yasutaka, “Tin doped indium oxide thin films: electrical properties”, J. Appl. Phys. vol. 83, no.5, pp. 2631–2645, Nov.1998. [11] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor,” Sens. Actuators, B, vol. 65, no. 1-3, pp. 23-25, Jun. 2000. [12] C. H. Kao, C. C. Chen, C. H. Huang, C. Y. Huang. C. J. Lin, and J. C. Ou, “Investigation of Ti-doped Gd2O3 charge trapping layer with HfO2 blocking oxide for memory application,” Thin Solid Films, vol. 520, no. 10, pp. 3857-3861, Mar. 2012. [13] C. H. Kao, H. Chen, C. S. Lai, J. C. Wang, S. P. Lin, K. S. Chen, C. Y. Huang, and J. C. Ou, “Erbium oxide as pH-sensing membranes in extended gate field effect transistors,” Adv. Sci. Lett. 17, no-1, pp. 122-124, Oct. 2012. [14] H. V. D. Vlekkert, L. Bousse, and N. D. Rooij, “ The temperature dependence of the surface potential at the Al2O3/electrolyte interface,” J. Colloid and Interface Science, vol. 122, no. 2, pp. 336-345, Apr. 1988. [15] A. Garde, J. Alderman, and W. Lane, “ Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment,” Sens. and actuators, B, vol. 27, no. 1-3, pp. 341-344, Jun. 1995. [16] J. L. Diot, J. Joseph, J. R. Martin and P. Clechet, “pH dependence of the Si/SiO2 interface state density for EOS systems,” J. Electroanal. Chem., vol. 193, no. 1-2, pp. 75-88, Oct. 1985. [17] P. Bergveld and A. Sibbald, “Analytical and biomedical application of ion-sensitive field-effect transistors,” Elsevier Science Publishing Company Inc., New York, 1988. [18] A. S. Poghossian, “The super- nernstian pH sensitivity of Ta2O5 gate ISFET”, Sens. and Actuators, B, vol. 7, no. 1-3, pp. 367-370, Mar.1992. [19] P. R. Barabash, R. S. C. Cobbold, and W. B. Wlodarski, “Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect-transistor (EISFETs),” IEEE Trans. on Electron Device, vol. 34, no. 6, pp. 1271-1282, Jun. 1987. [20] A. Fog and R. P. Buck, “Electronic semiconducting oxides as pH sensors,” Sens. Actuators B, vol. 5, no. 2, pp. 137–146, Feb. 1984. [21] S. Yoshida, N. Hara, and K. Sugimoto, “Development of a wide range pH sensor based on electrolyte-insulator-semiconductor structure with corrosion-resistant Al2O3-Ta2O5 and Al2O3-ZrO2 double-oxide thin films,” J. Electrochem. Soc., vol. 151, no. 3, pp. 53-58, Jan. 2004. [22] C. S. Lai, C. M. Yang, and T. F. Lu, “pH sensitivity improvement on 8 nm thick hafnium oxide by post deposition annealing,” Electrochem. Solid-State Lett., vol. 9, no. 3, pp. 90–92, Jan. 2006. [23] L. B. Chang, H. H. Ko, Y. L. Lee, C.S. Lai, and C. Y. Wang, “The electrical and pH sensitive characteristics of thermal Gd2O3/SiO2-stacked oxide capacitors,” J. Electrochem. Soc., vol. 153, no.4, pp. 330-332, Dec. 2006. [24] T. M. Pan, P. Y. Liao, K. Y. Chang, and L. Chi, “Structural and sensing characteristics of Gd2Ti2O7, Er2TiO5 and Lu2Ti2O7 sensing membrane electrolyte-insulator semiconductor for bio-sensing applications,” Electrochim. Acta, vol. 89, no. 1, pp. 798-806, Feb. 2013. [25] T. M. Pan, M. D. Huang, C. W. Lin, and M. H. Wu, “Development of high-k HoTiO3 sensing membrane for pH detection and glucose biosensor,” Sens. and Actuators, B, vol. 144, no. 1, pp.139-145, Jan. 2010. [26] S. M. Sze, “Physics of Semiconductor Devices,” 2nd Edition, Central Book Company, Taipei, Taiwan, 1985. [27] T. Pan, C. W. Wang, C. Y. Chen, and J. L. Her, “Impact of yttrium content and thermal annealing on the structural and sensing characteristics of YbYxOy sensing membranes”, J. Appl. Phys. vol. 119, no. 7, pp. 024110, Feb. 2016. [28] M. Fanciulli, and G. Scarel, Rare Earth Oxide Thin Film: Growth, Characterization, and Applications, Springer, Berlin, 2007. [29] G. He, and Z. Sun (Eds.), High-k Gate Dielectrics for CMOS Technology, Wiley-VCH Verlag GmbH & Co., Weinheim, Aug. 2012. [30] C. Hu, M. D. McDaniel, A. Jiang, A. Posadas, A. A. Demkov, J. G. Ekerdt, and E. T. Yu, “A Low-Leakage Epitaxial High-k Gate Oxide for Germanium Metal-Oxide-Semiconductor Devices,” Mater. Interfaces, vol. 8, no. 8, pp. 5416–5423, Feb. 2016. [31] J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent and J. M. Rosamilia, “High gate dielectircs Gd2O3 and Y2O3 for silicon,” Appl. Phys. Lett., vol. 77, no. 1, pp. 130-132, May. 2000. [32] Y. Guanghua, and S. Michael, “An Acetic Acid/Water Based Sol-Gel PZT Process I: Modification od Zr and Ti Alkoxides with Acetic Acid” J. Sol-Gel Sci. vol. 6, no. 1, pp.65-74, Jan.1996. [33] D. Okpala, and V. Uche, “Sol-gel technique: A veritable tool for crystal growth,” Adv. Appl. Sci. Res., vol. 4, no. 1, pp. 506-510, Jan. 2013. [34] A. E. Danks, S. R. Hall, and Z. Schnepp, “The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis”, Mater. Horiz., vol. 3, no. 2, pp. 9-112, Dec. 2015. [35] D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, “High-mobility ultrathin semiconducting films prepared by spin coating”, Nature , vol. 428, no. 6980, pp. 299-303, Mar. 2004. [36] M. D. Tyona, “A theoritical study on spin coating technique”, Adv. Mater. Res., vol. 2, no. 4, pp. 195-208, Apr. 2013. [37] J. H. Lai, “An investigation of spin coating of electron resists”, Polym. Eng. Sci., vol. 19, no. 15, pp. 1117-1121, Nov. 1979. [38] D. A. H. Hanaor, G. Trianni, and C. Sorrell, “Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film,” Surf. Coat. Tech., vol. 205, no. 12, pp. 3658-3664, Mar. 2011. [39] B. T. Chen, “Investigation of the Solvent-Evaporation Effect on Spin Coating of Thin Films,” Polym. Eng. Sci., vol. 23, no. 7, pp. 399-403, May. 1983. [40] A. G. Emslie, F. T. Bonner and L. G. Peck, "Flow of a Viscous Liquid on a Rotating Disk", J. Appl. Phys., vol. 29, no. 5, pp. 858-862, May. 1958. [41] A. Mihi, M. Ocana, and H. Miguez, "Oriented Colloidal-Crystal Thin Films by Spin-Coating Microspheres Dispersed in Volatile Media," Adv. Mat., vol. 18, no. 17, pp. 2244-2249, Sep. 2006. [42] D. W. Schubert, and T. Dunkel, “Spin coating from molecular point of view: Its concentration regimes, Influence of molar of molar mass and distribution”, Mater. R es. Innov., vol. 7, no. 5, pp. 314-321, Oct. 2003. [43] W. J. Daughton, and F. L. Givens, "An Investigation of the Thickness Variation of Spun-On Thin Films Commonly Associated with the Semiconductor Industry," J. Electrochem. Soc., vol. 129, no. 1, pp. 173-179, Jan. 1982. [44] A. Munch, C. P. Please, and B. Wagner, “Spin coating of an evaporating polymer solution”, Phys. Fluids, vol. 23, no. 10, pp. 102101, Oct. 2011. [45] C. C. Chang, C. L. Pai, W. C. Chen, and S. A. Jenekhe, “Spin coating of conjugated polymers for electronic and optoelectronic applications,” Thin Solid Films, vol. 479, no. 1-2, pp. 254-260, May. 2005. [46] F. H. Chen, C. H. Chen, and T. M. Pan, “Structural and Electrical Characteristics of High-k Sm2TiO5 Gate Dielectrics for InGaZnO Thin-film Transistors,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 3, pp.1337-1342, Jun. 2015. [47] C. H. Kao, S. Z. Chen, Y. Luo, W. T. Chiu, S. W. Chiu, C. Chen, C. Y. Lin, and H. Chen, “The influence of Ti doping and annealing on Ce2Ti2O7 flash memory devices”, Appl. Surf. Sci., vol. 396, no.1, pp. 1673–1677, Dec. 2016. [48] C. S. Lee, S. K. Kim, and M. Kim, “Ion-Sensitive Field-Effect Transistor for Biological Sensing,” Sensors, vol. 9, no. 9, pp. 7111-7131, Aug. 2009. [49] P. Bergveld, “ISFET theory and practice”, in IEEE Sensor Conference, Toronto, pp. 1-25, Oct. 2003. [50] C. D. Fung, P.W. Cheung, and W.H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor” IEEE Trans. Electron Devices, vol. 33, no. 1, pp. 8-18, Jan. 1986. [51] T. M. Pan, and K.M. Liao, “Structural properties and sensing characteristics of Y2O3 sensing membrane for pH-ISFET” Sens. Actuators, B, vol. 127, no.2, pp. 480-485, Nov. 2007. [52] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, Singapore, Nov. 2002. [53] B. Prasad, and R. Lal, “Capacitive Immunosensor Measurement System with a Lock in amplifier and Potentiostatic control by software”, Meas. Sci. Technol., vol. 10, no.11, pp. 1097-1104, Jul. 1999. [54] M. Kuhn, “A quasi Static Technique for MOS C-V and surface state Measurements”, Solid-State Electron. vol. 13, no.6, pp. 873-885, Jun.1970. [55] P. Bergveld, “Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology,” IEEE Trans. Electron Devices, vol. 19, no. 5, pp. 342-351, Sep. 1972. [56] J. Chermiti, M. B. Ali, C. Dridi, M. Gonchar, N. J. Renoult, and Y. Korpan, “Site-binding model as a basis for numerical evaluation of analytical parameters of capacitance-biosensors for formaldehyde and methylamine detection”, Sens. Actuator B-Chem., vol. 188, pp. 824-830, Nov. 2013. [57] T. W. Lina, D. Kekudaa and C.W. Chua, “Label-free detection of DNA using novel organic-based electrolyte-insulator semiconductor,” Biosens. Bioelectron., vol. 25, no. 12, pp. 2706-2710, Aug. 2010. [58] H. J. Jang, and W. J. Cho, “High performance silicon-on-insulator based ion-sensitive field-effect transistor using high-k stacked oxide sensing membrane,” Appl. Phys. Lett, vol. 99, no. 4, pp. 043703, Jul. 2011. [59] J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B-Chem., vol. 76, no.1-3, pp. 624-628, Jun. 2001. [60] H. Scher, and E.W. Montroll “Anomolous transit-time deispersion in amorphous solids,” Phys. Rev. B, vol. 12, no. 6 pp. 2455-2477, Sep. 1975. [61] T. M. Pan, C. W. Wang, W. H. Weng, and S. T. Pang, “Impact of titanium content and postdeposition annealing on the structural and sensing properties of TbTixOy sensing membranes,” J. Mater. Chem. C, vol. 2, no. 36, pp.7575-7582, Jul. 2014. [62] P. O. Hahn, and M. Henzler, “The Si–SiO2 interface: correlation of atomic structure and electrical properties,” J. Vac. Sci. Techno. A, vol. 2, no. 2, pp. 574-583, Jun. 1984. [63] G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang, “Effect of post-deposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100),” Surf. Sci., vol. 576, no. 1-3, pp. 67-75, Feb. 2005. [64] L. Bousse, “Hysteresis in Al2O3 in gate ISFETs”, Sens. Actuators B, vol. 2, no. 2, pp.103-110, May.1990. [65] R. Sardar, A. M. Funston, P. Mulvaney, and R.W. Murray, “Gold Nanoparticles: Past, Present, and Future” Langmuir,vol. 25, no. 24, pp. 13840– 13851, Jul. 2009. [66] X. D. Hao, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress” Biosens. Bioelectron., vol. 23, no. 2, pp. 151–160, Sep. 2007. [67] M. C. Daniel, and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev., vol. 104, no. 1, pp. 293–346, Jan. 2004. [68] J. Zheng, Z. Zhu, H. Chen, and Z. Liu, “Nanopatterned Assembling of Colloidal Gold Nanoparticles on Silicon,” Langmuir, vol. 16, no. 10, pp. 4409–4412, Apr. 2000. [69] A. J. Haes, and R. P. V. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal Bioanal Chem., vol. 379, no. 7, pp. 920–930, Jul. 2004. [70] S. K. Ghosh, and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev., vol.107, no. 11, pp. 4797–4862, Nov. 2007. [71] E. Hutter, and J. H. Fendler, “exploitation of localized surface plasmon resonance,” Adv. Mater., vol. 16, no. 19, pp. 1685–1706, Oct. 2004. [72] C. H. Lalander, Y. Zheng, S. Dhuey, S. Cabrini, and U. Bach, “DNA-directed self-assembly of gold nanoparticles onto nano-patterned surfaces: controlled placement of individual nanoparticles into regular arrays,” ACS Nano, vol. 4, no. 10, pp. 6153–6161, Oct. 2010.
|