跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建安
研究生(外文):Chien An Chen
論文名稱:開發天然抗癌藥物的新作用
論文名稱(外文):Development of novel effects of natural anticancer drugs
指導教授:李宗諺李宗諺引用關係張恒鴻張恒鴻引用關係陳裕仁陳裕仁引用關係
指導教授(外文):T. Y. LeeH. H. ChangY. J. Chen
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所中醫組
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:moscatilin食道癌凋亡分裂風暴輻射增敏daphnoretin樹突細胞
外文關鍵詞:moscatilinesophageal cancerapoptosismitotic catastropheradiosensitizationdaphnoretindendritic cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
Moscatilin是從蘭科植物石斛中提取出的化合物,許多的研究指出此化合物具有抗腫瘤的活性。Daphnoretin則是Wikstroemiaindica C.A. Meys的一個活性成分,也被證實具有抗癌作用。因此,在我們實驗中,以此兩種天然的抗癌藥物,進行研究。一來探討驗證moscatilin對於人類食道癌的抑制作用以及開發可能的輻射增敏效用。二來開發daphanoretin的免疫調控作用,以daphnoretin處理單核球後,觀察其對樹突細胞的分化與成熟的影響。結果發現,在細胞實驗中,moscatilin對於兩種不同的食道癌細胞都有抑制生長的作用。而且在moscatilin作用後,可見到細胞進行凋亡與分裂風暴。藥物處理後,細胞分布在Sub-G1期和多倍體期的族群也明顯增加。進一步在免疫螢光染色的實驗中觀察到,moscatilin處理後細胞出現多極的細胞分裂和多核的現象,隨後才形成分裂風暴。西方墨點試驗顯示,經moscatilin處理後,癌細胞內的polo-like kinase 1(Plk1)和cyclin B1的表現量增加。另外,我們進一步探討,moscatilin在動物實驗上的作用。Moscatilin確實能抑制移植上小鼠的腫瘤的生長,而且並未導致嚴重的毒性反應。此外,以moscatilin前處理食道癌細胞後,會增加癌細胞對放射治療的敏感度。
而在daphnoretin實驗中,藥物處理單核球後,樹突細胞的回復率下降。成熟的樹突細胞具有較短與較少的樹突。Daphnoretin降低CD1a, CD40, CD83, DC-SIGN, HLA-DR的表現量進而調控樹突細胞的分化與成熟。Daphnoretin 抑制了樹突細胞對於naive CD4+CD45+RA+ T cell的異體刺激活性。機轉上的結果顯示,Daphnoretin可能藉由下調磷酸化c-Jun N-terminal kinase (pJNK)的表現達到此結果。在動物皮膚移植與樹突細胞實驗中,Daphnoretin抑制了急性排斥作用,延長了移植皮膚的存活。
綜合來看,我們的實驗顯示,moscatilin除了具有抑制食道癌生長的效果外,也有輻射增敏的作用。而daphnoretin能調控樹突細胞的分化與成熟來達到免疫調控的目的.因此,我們經由藥物的不同機轉,來研究開發出新的作用,可應用在更多的適應症。
Moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii, has been shown to possess anticancer activity. Daphnoretin, an active constituent of Wikstroemiaindica C.A. Meys, has also been shown possessing anti-cancer activity. We examined the effect of moscatilin on human esophageal cancer cells, including squamous cell carcinoma (SCC) and adenocarcinoma (ADC) cells and its possible mechanisms. We examined the effect of daphnoretin on differentiation and maturation of human myeloid dendritic cells (DCs), too. The results showed moscatilin suppressed the growth of both the histological cell lines in a dose- and time-dependent manner. Morphological changes indicative of apoptosis and mitotic catastrophe were observed following moscatilin treatment. The population of cells in the sub-G1 phase and polyploidy phase significantly increased after treatment. Immunofluorescence revealed multipolar mitosis and subsequent multinucleation in moscatilin-treated cells, indicating the development of mitotic catastrophe. Western blot showed a marked increase inexpressions of polo-like kinase 1 and cyclin B1 after exposure to moscatilin. In conclusion, moscatilin inhibits growth and induces apoptosis and mitotic catastrophe in human esophageal SCC- and ADC-derived cell lines, indicating that moscatilin has broad potential against esophageal cancer. We further aimed to validate the in vitro activity and Plk1 expression in vivo following moscatilin treatment and to examine the treatment’s radiosensitizing effect. Moscatilin significantly suppressed tumor growth in mice bearing human esophageal xenografts without affecting body weight, white blood cell counts, or liver and renal function. Moreover, moscatilin pretreatment enhanced CE81T/VGH and BE-3 cell radioresponse in vitro.
In addition, after treatment with daphnoretin (0, 1.1, 3.3, 10 and 30 M) to initiate monocytes, the recovery rate of DCs was reduced in a dose-dependent manner. The mature DCs differentiated in the presence of daphnoretin had fewer and shorter dendrites. Daphnoretin modulated DCs differentiation and maturation in terms of lower expression of CD1a, CD40, CD83, DC-SIGN, HLA-DR. Daphnoretin inhibited the allostimulatory activity of DCs on proliferation of naive CD4+CD45+RA+T cell. On the mitogen-activated protein kinase, daphnoretin down-regulated the lipopolysaccharide-augmented expression of phosphorylated c-Jun N-terminal kinase (pJNK), but not p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of JNK by anisomycin reversed the effect of daphnoretin on daphnoretin-inhibited pJNK expression and dendrite formation of DCs. In disease model related to maturation of DCs, daphnoretin suppressed the acute rejection of skin allografts in mice.
In conclusion, moscatilin inhibits growth and induces apoptosis and mitotic catastrophe in human esophageal SCC- and ADC-derived cell lines. Moscatilin may also inhibit growth of human esophageal tumors and sensitize esophageal cancer cells to radiation therapy. Daphnoretin modulated differentiation and maturation of DCs toward a state of atypical maturation with impaired allostimulatory function and this effect may go through down-regulation of phosphorylated JNK. Therefore, we perhaps can develop novel indication from natural drugs through different mechanisms.
指導教授推薦書
口試委員會審定書
致謝 iii
中文摘要 iv
英文摘要 vi
目錄 ix
圖目錄 xi
表目錄 xii
CHAPTER 1 INTRODUCTION ..................................................... - 2 - SECTION 1 MOSCATILIN ...............................................................................................................................................- 2 - SECTION 2 DAPHNORETIN ...........................................................................................................................................- 5 -
CHAPTER 2 MATERIALS AND METHODS ............................................ - 8 - SECTION 1 MOSCATILIN ..............................................................................................................................................- 8 - SECTION 2 DAPHNORETIN ........................................................................................................................................ - 16 -
CHAPTER 3 RESULTS......................................................... - 21 - SECTION 1 THE INHIBITION AND RADIOSENSITIZATION OF MOSCATILIN IN ESOPHAGEAL CANCER... - 21 - SECTION 2 THE IMMUNITY MODULATION OF DAPHNORETIN IN DC............................................................ - 40 -
CHAPTER 4 DISCUSSION ...................................................... - 50 - SECTION1 THE INHIBITION AND RADIOSENSITIZATION OF MOSCATILIN .................................................... - 50 -
SECTION 2 THE IMMUNITY MODULATION OF DAPHNORETIN......................................................................... - 54 -
CHAPTER 5 CONCLUSIONS ..................................................... - 57 -
REFERENCES ............................................................... - 58 -

圖目錄
Figure 1 ............................................................................................................... - 22 -
Figure 2 ............................................................................................................... - 24 -
Figure 3 ............................................................................................................... - 25 -
Figure 4 ............................................................................................................... - 29 -
Figure 5 ............................................................................................................... - 32 -
Figure 6 ............................................................................................................... - 33 -
Figure 7 ............................................................................................................... - 34 -
Figure 8 ............................................................................................................... - 36 -
Figure 9 ............................................................................................................... - 37 -
Figure 10 ............................................................................................................. - 38 -
Figure 11 ............................................................................................................. - 39 -
Figure 12 ............................................................................................................. - 41 -
Figure 13 ............................................................................................................. - 42 -
Figure 14 ............................................................................................................. - 43 -
Figure 15 ............................................................................................................. - 44 -
Figure 16 ............................................................................................................. - 47 -
Figure 17 ............................................................................................................. - 49 -

表目錄
Table 1 - 26 -
Table 2 - 32 -
Table 3 - 36 -
1. Tan W, Lu J, Huang M, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chinese medicine. 2011;6(1):27.
2. Teiten MH, Gaascht F, Dicato M, Diederich M. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochemical pharmacology. 2013;86(9):1239-1247.
3. Kumar B, Joshi J, Kumar A, Pandey BN, Hazra B, Mishra KP. Radiosensitization by diospyrin diethylether in MCF-7 breast carcinoma cell line. Molecular and cellular biochemistry. 2007;304(1-2):287-296.
4. Yashar CM, Spanos WJ, Taylor DD, Gercel-Taylor C. Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecologic oncology. 2005;99(1):199-205.
5. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P. Potential of spice-derived phytochemicals for cancer prevention. Planta medica. 2008;74(13):1560-1569.
6. Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461-477.
7. Song JI, Kang YJ, Yong HY, Kim YC, Moon A. Denbinobin, a phenanthrene from dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncology reports. 2012;27(3):813-818.
8. Chen TH, Pan SL, Guh JH, et al. Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clin Cancer Res. 2008;14(13):4250-4258.
9. Ho CK, Chen CC. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest. 2003;21(5):729-736.
10. Chen CC, Wu LG, Ko FN, Teng CM. Antiplatelet aggregation principles of Dendrobium loddigesii. J Nat Prod. 1994;57(9):1271-1274.
11. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA: a cancer journal for clinicians. 2008;58(2):71-96.
12. Bedenne L, Michel P, Bouche O, et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J Clin Oncol. 2007;25(10):1160-1168.
13. Kranzfelder M, Buchler P, Lange K, Friess H. Treatment options for squamous cell cancer of the esophagus: a systematic review of the literature. Journal of the American College of Surgeons. 2010;210(3):351-359.
14. Chiarion-Sileni V, Corti L, Ruol A, et al. Phase II trial of docetaxel, cisplatin and fluorouracil followed by carboplatin and radiotherapy in locally advanced oesophageal cancer. British journal of cancer. 2007;96(3):432-438.
15. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2001;4(5):303-313.
16. Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer. 2004;4(8):592-603.
17. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996;381(6584):713-716.
18. Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res. 2007;13(18 Pt 2):5501s-5508s.
19. Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2007;10(4-5):162-181.
20. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell death and differentiation. 2012;19(1):107-120.
21. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12(6):385-392.
22. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004;23(16):2825-2837.
23. Golsteyn RM, Mundt KE, Fry AM, Nigg EA. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function. J Cell Biol. 1995;129(6):1617-1628.
24. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245-252.
25. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. The Journal of experimental medicine. 1996;184(2):747-752.
26. Jonuleit H, Kuhn U, Muller G, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. European journal of immunology. 1997;27(12):3135-3142.
27. Kato T, Yamane H, Nariuchi H. Differential effects of LPS and CD40 ligand stimulations on the induction of IL-12 production by dendritic cells and macrophages. Cellular immunology. 1997;181(1):59-67.
28. Labeur MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. Journal of immunology. 1999;162(1):168-175.
29. Li C, Liu T, Zhao N, Zhu L, Wang P, Dai X. Dendritic cells transfected with indoleamine 2,3-dioxygenase gene suppressed acute rejection of cardiac allograft. International immunopharmacology. 2016;36:31-38.
30. Lee KH, Tagahara K, Suzuki H, et al. Antitumor agents. 49 tricin, kaempferol-3-O-beta-D-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from Wikstroemia indica. J Nat Prod. 1981;44(5):530-535.
31. Chen HC, Chou CK, Kuo YH, Yeh SF. Identification of a protein kinase C (PKC) activator, daphnoretin, that suppresses hepatitis B virus gene expression in human hepatoma cells. Biochemical pharmacology. 1996;52(7):1025-1032.
32. Hall IH, Tagahara K, Lee KH. Antitumor agents LIII: The effects of daphnoretin on nucleic acid and protein synthesis of Ehrlich ascites tumor cells. Journal of pharmaceutical sciences. 1982;71(7):741-744.
33. Yang ZY, Kan JT, Cheng ZY, Wang XL, Zhu YZ, Guo W. Daphnoretin-induced apoptosis in HeLa cells: a possible mitochondria-dependent pathway. Cytotechnology. 2014;66(1):51-61.
34. Jiang HF, Wu Z, Bai X, Zhang Y, He P. Effect of daphnoretin on the proliferation and apoptosis of A549 lung cancer cells in vitro. Oncology letters. 2014;8(3):1139-1142.
35. Wang JP, Raung SL, Kuo YH, Teng CM. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. European journal of pharmacology. 1995;288(3):341-348.
36. Colic M, Mojsilovic S, Pavlovic B, et al. Comparison of two different protocols for the induction of maturation of human dendritic cells in vitro. Vojnosanitetski pregled. 2004;61(5):471-478.
37. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 1996;56(4):816-825.
38. Woods CM, Zhu J, McQueney PA, Bollag D, Lazarides E. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Molecular medicine. 1995;1(5):506-526.
39. Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Developmental cell. 2004;7(5):637-651.
40. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253-265.
41. Strauss SJ, Higginbottom K, Juliger S, et al. The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res. 2007;67(6):2783-2790.
42. Hernandez-Vargas H, Palacios J, Moreno-Bueno G. Telling cells how to die: docetaxel therapy in cancer cell lines. Cell Cycle. 2007;6(7):780-783.
43. Morse DL, Gray H, Payne CM, Gillies RJ. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Molecular cancer therapeutics. 2005;4(10):1495-1504.
44. Blagosklonny MV, Robey R, Sheikh MS, Fojo T. Paclitaxel-induced FasL-independent apoptosis and slow (non-apoptotic) cell death. Cancer Biol Ther. 2002;1(2):113-117.
45. Demidenko ZN, Blagosklonny MV. Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res. 2004;64(10):3653-3660.
46. Eom YW, Kim MA, Park SS, et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24(30):4765-4777.
47. Ngan CY, Yamamoto H, Takagi A, et al. Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer science. 2008;99(1):129-139.
48. van Vugt MA, van de Weerdt BC, Vader G, et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J Biol Chem. 2004;279(35):36841-36854.
49. Mundt KE, Golsteyn RM, Lane HA, Nigg EA. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun. 1997;239(2):377-385.
50. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5(10):773-785.
51. Nitta M, Kobayashi O, Honda S, et al. Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene. 2004;23(39):6548-6558.
52. Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. Jama. 1999;281(17):1623-1627.
53. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11-20.
54. Sastry J, Kellie SJ. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatric hematology and oncology. 2005;22(5):441-445.
55. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. The American journal of the medical sciences. 2007;334(2):115-124.
56. Sinclair WK. Cyclic x-ray responses in mammalian cells in vitro. Radiation research. 1968;33(3):620-643.
57. Sinclair WK, Morton RA. X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiation research. 1966;29(3):450-474.
58. Terasima T, Tolmach LJ. Changes in x-ray sensitivity of HeLa cells during the division cycle. Nature. 1961;190:1210-1211.
59. Petronczki M, Lenart P, Peters JM. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Developmental cell. 2008;14(5):646-659.
60. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. International journal of radiation biology. 1997;72(4):409-421.
61. Hipp MM, Hilf N, Walter S, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood. 2008;111(12):5610-5620.
62. Lin JC, Huang WP, Liu CL, et al. Sorafenib induces autophagy in human myeloid dendritic cells and prolongs survival of skin allografts. Transplantation. 2013;95(6):791-800.
63. Lin JC, Liu CL, Lee JJ, et al. Sorafenib induces autophagy and suppresses activation of human macrophage. International immunopharmacology. 2013;15(2):333-339.
64. Piemonti L, Monti P, Allavena P, et al. Glucocorticoids affect human dendritic cell differentiation and maturation. Journal of immunology. 1999;162(11):6473-6481.
65. Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. Journal of immunology. 2001;166(6):3837-3845.
66. Nakahara T, Uchi H, Urabe K, Chen Q, Furue M, Moroi Y. Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells. International immunology. 2004;16(12):1701-1709.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊