|
1. Racaniello V. (2007). Picornaviridae: the viruses and their replication. In Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (ed), Fields virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA. 795-838. 2. Rossmann MG, Johnson JE. (1989). Icosahedral RNA virus structure. Annu. Rev. Biochem. 58, 533-573. 3. Yuyun Li, Runan Zhu, Yuan Qian, Jie Deng, Yu Sun, Liying Liu, Fang Wang, and Linqing Zhao. (2011). Comparing Enterovirus 71 with Coxsackievirus A16 by analyzing nucleotide sequences and antigenicity of recombinant proteins of VP1s and VP4s. BMC Microbiol. 11, 246. 4. Schmidt NJ, Lennette EH, Ho HH. (1974). An apparently new enterovirus isolated from patients with disease of the central nervous system. J. Infect. Dis. 129, 304-309. 5. McMinn PC (2012) Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr Opin Virol. 2(2):199-205 6. Hagiwara A, Tagaya I, Yoneyama T. (1978). Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology. 9, 60-63. 7. McMinn PC. (2002). An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol. Rev. 26, 91-107. 8. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, Wang JR, Shih SR. (1999). An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med. 341(13), 929-935. 9. Tzou-Yien Lin, Shiing-Jer Twu, Mei-Shang Ho, Luan-Yin Chang, Chin-Yun Lee. (2003). Enterovirus 71 outbreaks, Taiwan: occurrence and recognition. merg Infect Dis. 9(3), 291-293. 10. Qiaoyun F, Xiongfei J, Lihuan L, Angao X. (2013). Epidemiology and etiological characteristics of hand, foot and mouth disease in Huizhou City between 2008 and 2011. Arch Virol. 158(4), 895-899. 11. Van der Sanden S, Koopmans M, Uslu G, van der Avoort H; Dutch Working Group for Clinical Virology. (2009). Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. J Clin Microbiol.47(9), 2826-2833. 12. Sophie Bonnal, Christel Boutonnet, Leonel Prado-Lourenço, and Stéphan Vagner. (2003). IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res. 31(1), 427–428. 13. Shin-Ru Shih, Victor Stollar and Mei-Ling Li. (2011). Host factors in enterovirus 71 replication. J Virol. 85(19), 9658-9666. 14. Rei-Lin Kuo and Shin-Ru Shih. (2013). Strategies to develop antivirals against enterovirus 71. Virol J. 10, 28. 15. Jianmin Wang, Zhiqiang Wu, Qi Jin. (2011). COPI is required for enterovirus 71 replication. Plos one. 7(5), e38035. 16. Wessels E, Duijsings D, Niu TK, Neumann S, Oorschot VM, et al. (2006). A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell. 11, 191–201. 17. Shiqi Xie, Kai Wang, et al. (2011). DIDS blocks a chloride-dependent current that is mediated by the 2B protein of enterovirus 71. Cell Res. 21(8), 1271–1275. 18. Eskelinen EL, Tanaka Y, Saftig P. (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13:137–145. 19. S. Yamayoshi, Y. Yamashita, J. Li, et al. (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature Medicine, vol. 15, no. 7, pp. 798–801, 20. Yamayoshi S, Koike S. (2011) Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol. 85(10):4937-46. 21. Chen P, Song Z, Qi Y, et al (2012) Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J. Biol.Chem. 287:6406–6420. 22. Yamayoshi S, Iizuka S, Yamashita T, et al (2012) Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J. Virol. 86:5686 –5696. 23. Y. W. Lin, S. L. Yu, H. Y. Shao, et al. (2013) Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS ONE, vol. 8, no. 2, Article ID e57591 24. K. Fujii, N. Nagata, Y. Sato et al. (2013) Transgenic mouse model for the study of enterovirus 71 neuropathogenesis, PNAS, vol. 110, no. 36, pp. 14753–14758 25. Hopfner F, Schormair B, Knauf F, et al. (2011) Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features. BMC Neurol. 11:134. 26. Reczek D, Schwake M, Schroder J, et al. (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of betaglucocerebrosidase. Cell 131:770 –783. 27. Blanz J, Groth J, Zachos C, et al. (2010) Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand betaglucocerebrosidase. Hum. Mol. Genet. 19:563–572. 28. Lin HY, Yang YT, Yu SL, et al. (2013) Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. J Virol. 87(16): 9064-76. 29. Yang SL, Chou YT, Wu CN, et al. (2011)Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol. 85(22):11809-20. 30. Du N1, Cong H, Tian H, et al. (2014) Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol. 88(10):5816-33. 31. Su PY, Wang YF, Huang SW, et al. (2015) Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol. 89(8):4527-38. 32. Yamayoshi S, Fujii K, Koike S (2014) Receptors for enterovirus 71. Emerg Microbes Infect. 3(7):e53. 33. Kabir MA, Uddin W, Narayanan A, et al. (2011) Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. J Amino Acids. 843206. 34. Brackley KI1, Grantham J. (2009) Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones. 14(1):23-31. 35. Araki K, Suenaga A, Kusano H, et al. (2016) Functional profiling of asymmetrically-organized human CCT/TRiC chaperonin. Biochem Biophys Res Commun. 481(3-4):232-238. 36. Vabulas RM, Raychaudhuri S, Hayer-Hartl M, et al. (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol. 2(12):a004390. 37. Roh SH, Kasembeli M, Bakthavatsalam D, et al. (2015) Contribution of the Type II Chaperonin, TRiC/CCT, to Oncogenesis. Int J Mol Sci. 16(11):26706-20. 38. Ding Y, Li XR, Yang KY, et al. (2013) Proteomics analysis of gastric epithelial AGS cells infected with Epstein-Barr virus. Asian Pac J Cancer Prev. 14(1):367-72. 39. Zhang J, Wu X, Zan J, et al. (2013)Cellular chaperonin CCTγ contributes to rabies virus replication during infection.Virology 87(13):7608-21. 40. Inoue Y, Aizaki H, Hara H, et al. (2011) Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology. 410(1):38-47.
|