1. Ferlay, J, Soerjomataram, I, Ervik, M, Dikshit, R, Eser, S, Mathers, C, Rebelo, M, Parkin, D, Forman, D, and Bray, F, GLOBOCAN 2012 v1.0. Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11, 2013, International Agency for Research on Cancer.
2. Siegel, R L, Miller, K D, and Jemal, A, Cancer statistics, 2016. A Cancer Journal for Clinicians, 2016. 66(1): p. 7-30.
3. Cole, A R, PCTK proteins: the forgotten brain kinases? Neurosignals, 2009. 17(4): p. 288-97.
4. Meyerson, M, H.Enders, G, Wu, C-L, Su, L-K, Gorkal, C, Nelson, C, Harlow, E, and Tsai, L-H, A family of human cdc2-related protein kinases. The EMBO Journal, 1992. 11(8): p. 2909-17.
5. Mikolcevic, P, Rainer, J, and Geley, S, Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs. Cell Cycle, 2012. 11(20): p. 3758-68.
6. Carrel, L, Clemson, C M, Dunn, J M, Miller, A P, Hunt, P A, Lawrence, J B, and Willard, H F, X Inactivation Analysis and DNA Methylation Studies of the Ubiquitin Activating Enzyme E1 and PCTAIRE-1 Genes in Human and Mouse. Human Molecular Genetics, 1996. 5(3): p. 391-401.
7. Hirose, T, Tamaru, T, Okumura, N, Nagai, K, and Okada, M, PCTAIRE 2, a Cdc2-related serinehhreonine kinase, is predominantly expressed in terminally differentiated neurons. European Journal of Biochemistry, 1997. 249: p. 481-8.
8. Charrasse, S, Carena, I, Hagmann, J, Woods-Cook, K, and Ferrari, S, PCTAIRE-1: characterization, subcellular distribution, and cell cycle-dependent kinase activity. Cell Growth & Differentiation, 1999. 10: p. 611-20.
9. Rhee, K and Wolgemuth, D L, Cdk family genes are expressed not only in dividing but also in terminally differentiated mouse germ cells, suggesting their possible function during both cell division and differentiation. Developmental Dynamics, 1995. 204: p. 407-20.
10. Besset, V, Rhee, K, and Wolgemuth, D J, The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research, 1999. 10(3): p. 173-81.
11. Bouffant, F L, Minter, P L, Traiffort, E, Ruat, M, and Sladeczek, F, Multiple subcellular localizations of PCTAIRE-1 in brain. Molecular and Cellualr Neuroscience, 2000. 16(4): p. 388-95.
12. Graeser, R, Gannon, J, Poon, R Y C, Dubois, T, Aitken, A, and Hunt, T, Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. Journal of Cell Science, 2002. 115(17): p. 3479-90.
13. Yanagi, T, Krajewska, M, Matsuzawa, S-i, and Reed, J C, PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Molecular and Cellualr Biology, 2014. 74(20): p. 5795-807.
14. Yanagi, T, Reed, J C, and Matsuzawa, S-i, PCTAIRE1 regulates p27 stability, apoptosis and tumor growth in malignant melanoma. Oncoscience, 2014. 1(10).
15. Liu, Y, Cheng, K, Gong, K, Fu, A K Y, and Ip, N Y, Pctaire1 phosphorylates N-ethylmaleimide-sensitive fusion protein: implications in the regulation of its hexamerization and exocytosis. The Journal of Biological Chemistry, 2006. 281(15): p. 9852-8.
16. Chen, Y A and Scheller, R H, SNARE-mediated membrane fusion. Nature Review Molecular Cell Biology, 2001. 2(2): p. 98-106.
17. Palmer, K J, Konkel, J E, and Stephens, D J, PCTAIRE protein kinases interact directly with the COPII complex and modulate secretory cargo transport. Journal of Cell Science, 2005. 118(17): p. 3839-47.
18. Shehata, S N, Deak, M, Morrice, N A, Ohta, E, Hunter, R W, Kalscheuer, V M, and Sakamoto, K, Cyclin Y phosphorylation- and 14-3-3-binding-dependent activation of PCTAIRE-1/CDK16. Biochemical Journal, 2015. 469(3): p. 409-20.
19. Mikolcevic, P, Sigl, R, Rauch, V, Hess, M W, Pfaller, K, Barisic, M, Pelliniemi, L J, Boesl, M, and Geley, S, Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis. Molecular and Cellualr Biology, 2012. 32(4): p. 868-79.
20. Cheng, K, Li, Z, Fu, W-Y, Wang, J H, Fu, A K Y, and Ip, N Y, Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. The Journal of Biological Chemistry, 2002. 277(35): p. 31988-93.
21. Lee, M-s, Kwon, Y T, Li, M, Peng, J, Friedlander, R M, and Tsai, L-H, Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 2000. 405: p. 360-4.
22. FU, W-Y, CHENG, K, FU, A K Y, and IP, N Y, Cyclin-dependent kinase 5-dependent phosphorylation of Pctaire1 regulates dendrite development. Neuroscience, 2011. 180: p. 353-9.
23. Patrick, G N, Zukerberg, L, Nikolic, M, Monte, S d l, Dikkes, P, and Tsai, L-H, Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999. 402: p. 615-22.
24. Liu, J-L, Wang, X-Y, Huang, B-X, Zhu, F, Zhang, R-G, and Wu, G, Expression of CDK5/p35 in resected patients with non-small cell lung cancer: relation to prognosis. Medical Oncology, 2011. 28(3): p. 673-8.
25. Strock, C J, Park, J-I, Nakakura, E K, Bova, G S, Isaacs, J T, Ball, D W, and Nelkin, B D, Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Research, 2006. 66(15): p. 7509-15.
26. Yanagi, T, Tachikawa, K, Wilkie-Grantham, R, Hishiki, A, Nagai, K, Toyonaga, E, Chivukula, P, and Matsuzawa, S-i, Lipid Nanoparticle-mediated siRNA Transfer Against PCTAIRE1/PCTK1/Cdk16 Inhibits In Vivo Cancer Growth. Molecular Therapy—Nucleic Acids, 2016. 5(6): p. e327.
27. Yanagi, T, Shi, R, Aza-Blanc, P, Reed, J C, and Matsuzawa, S-i, PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLOS One, 2015. 10(3): p. e0119404.
28. Tang, X, Guilherme, A, Chakladar, A, Powelka, A M, Konda, S, Virbasius, J V, Nicoloro, S M C, Straubhaar, J, and Czech, M P, An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(7): p. 2087-92.
29. Mellman, I and Warren, G, The Road Taken. Cell, 2000. 100(1): p. 99-112.
30. Nickel, W, The mystery of nonclassical protein secretion. European Journal of Biochemistry, 2003. 270(10): p. 2109-19.
31. Nickel, W, Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic, 2005. 6(8): p. 607-14.
32. Rubartelli, A, Cozzolino, F, Talio, M, and Sitia, R, A novel secretory pathway for interleukin-lβ, a protein lacking a signal sequence. The EMBO Journal, 1990. 9(5): p. 1503-10.
33. Seelenmeyer, C, Stegmayer, C, and Nickel, W, Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles. FEBS Letters, 2008. 582(9): p. 1362-8.
34. Lancaster, G I and Febbraio, M A, Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 2005. 280(24): p. 23349-55.
35. Denny, P W, Gokool, S, Russell, D G, Field, M C, and Smith, D F, Acylation-dependent protein export in Leishmania. The Journal of Biological Chemistry, 2000. 275(15): p. 11017-25.
36. Xue, H, Lu, B, and Lai, M, The cancer secretome: a reservoir of biomarkers. Journal of Translational Medicine, 2008. 6: p. 52.
37. Brady, J J, Chen-Hua Chuang, Greenside, P G, Rogers, Z N, Murray, C W, Caswell, D R, Hartmann, U, Connolly, A J, Sweet-Cordero, E A, Kundaje, A, and Winslow, M M, An Arntl2-Driven Secretome Enables Lung Adenocarcinoma Metastatic Self-Sufficiency. Cancer Cell, 2016. 29(5): p. 697-710.
38. Cordani, M, Pacchiana, R, Butera, G, D'Orazi, G, Scarpa, A, and Donadelli, M, Mutant p53 proteins alter cancer cell secretome and tumour microenvironment: Involvement in cancer invasion and metastasis. Cancer Letters, 2016. 376(2): p. 303-9.
39. 施鈞喨, 循環性核醣核酸之研究:分析、收集方法與肺癌診斷上的應用 (博士論文), 2016. 取自http://handle.ncl.edu.tw/11296/ ndltd/2809553305353219851240. 鄭心喻, 探討PCTK1在蛋白分泌與肺癌發展所扮演的角色 (碩士論文), 2015. 取自http://handle.ncl.edu.tw/11296/ndltd/ 1299699003615381718341. Lokman, N A, Ween, M P, Oehler, M K, and Ricciardelli, C, The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenvironment, 2011. 4(2): p. 199-208.
42. Xiong, G P, Zhang, J X, Gu, S P, Y. B. Wu, and Liu, J F, Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma, 2012. 59(4): p. 409-15.