(3.237.48.165) 您好!臺灣時間:2021/05/09 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:羅健文
研究生(外文):LO, CHIEN-WEN
論文名稱:含芸香苷之聚乙烯醇/幾丁聚醣奈米纖維膜的製備及生物相容性探討
論文名稱(外文):Preparation and Evaluation of PVA/Chitosan Nanofibrous Mats Containing Rutin for Biocompatibility
指導教授:饒文娟
指導教授(外文):JAO, WIN-CHUN
口試委員:楊銘乾胡寶元饒文娟
口試委員(外文):YANG, MING-CHIENHU, BAU-YUANJAO, WIN-CHUN
口試日期:2017-06-24
學位類別:碩士
校院名稱:中華科技大學
系所名稱:健康科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:57
中文關鍵詞:聚乙烯醇幾丁聚醣芸香苷抗氧化活性細胞毒性
外文關鍵詞:poly(vinyl alcohol)chitosanrutinantioxidant activitycytotoxicity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究將聚乙烯醇(poly(vinyl alcohol))與幾丁聚醣(chitosan) 包覆芸香苷(rutin),運用靜電紡絲加工技術製備奈米纖維。利用掃描式電子顯微鏡(SEM)觀察聚乙烯醇/幾丁聚醣-芸香苷奈米纖維膜的面型態,其纖維平均直徑約在150 到200 nm之間與靜電紡絲條件有關。測量聚乙烯醇/幾丁聚醣-芸香苷奈米纖維膜其平衡含水率與水蒸氣穿透率,其結果顯示符合傷口敷料標準。聚乙烯醇/幾丁聚醣-芸香苷奈米纖維膜之抗氧化化活性以DPPH 自由基清除率、亞鐵離子螯合能力與總酚含量等方法分析;並以MTT分析方法評估纖維母細胞L929在聚乙烯醇/幾丁聚醣-芸香苷奈米纖維膜之細胞毒性。由上述實驗結果顯示聚乙烯醇/幾丁聚醣-芸香苷奈米纖維膜在傷口敷料的應用有極大潛力。
The electrospinning technique was used to fabricate poly(vinyl alcohol) (PVA)/chitosan (CS) nanofibers containing rutin. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the PVA/CS-rutin nanofibrous mats and their average diameters ranged from 150 to 200 nm depending on the electrospinning parameters. Water vapor transmission rate (WVTR) and equilibrium water content (EWC) of these PVA/CS-rutin nanofibrous mats were assessed and the results were in the desired range for wound dressings. The antioxidant activities of PVA/CS-rutin nanofibrous mats were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferrous iron chelating and total phenolic content assays. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of PVA/CS-rutin nanofibrous mats against L929 fibroblast cells. The PVA/CS-rutin nanofibrous mats offer a great potential for wound dressing applications.
Abstract i
摘要 ii
目次 iii
圖目錄 v
表目錄 vii
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 2
第二章 文獻回顧 4
第一節 靜電紡絲介紹 4
第二節 聚乙烯醇 15
第三節 幾丁聚醣 17
第三節 芸香苷 25
第三章 材料與方法 27
第一節 實驗藥品 27
第二節 實驗儀器 28
第三節 實驗流程 29
第四節 實驗方法 30
第四章 實驗結果與討論 38
第一節 物理性質分析 38
第二節 抗氧化能力分析 43

第三節 生物相容性 45
第五章 結論 49
第六章 參考文獻 51
江晃榮,生體高分子(幾丁質•膠原蛋白)產業現況與展望,財團法人生物技術開發中心,(1998)。
經濟部技術處,產業技術白皮書,(2009)。
Ahmed, F. E. Lalia, B. S. Hashaikeh, R. (2015). A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 356:15-30.
Ahmed, S. Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10:27-37.
Ahn, Y. C. Park, S. K. Kim, G. T. Hwang, Y. J. Lee, C. G. Shin, H. S. Lee, J. K. (2006). Development of high efficiency nanofilters made of nanofibers. Current Applied Physics, 6:1030-1035.
Alavarse, A. C. de Oliveira Silva, F. W. Colque, J. T. da Silva, V. M. T Prieto, T. Venancio, E. C. Bonvent, J. J. (2017). Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Materials Science and Engineering C, 77:271-281.
Anitha, A. Sowmya, S. Kumar, P. T. S. S. Chennazhi, D.K.P. Ehrlich, H. Tsurkan, M. Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39:1644-1667.
Balakrishnana, B. Mohantyb, M. Umashankarc, P. R. Jayakrishnan, A. (2005). Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26:6335-6342.
Beachley, V. Wen, X. (2010). Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 35:868-892.
Bhardwaj, N. Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28: 325-347.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181:1199-1200.
Braca, A. De Tommasi, N. Di Bari, L. Pizza, C.,Politi, M. Morelli, I. (2001). Antioxidant principles from Bauhinia terapotensis. Journal of Natural Products, 64:892-895.
Calabro`, M. L. Tommasini, S. Donato, P. Stancanelli, R. Raneri, D. Catania, S. (2005). The rutin/b-cyclodextrin interactions in fully aqueous solution: Spectroscopic studies and biological assays. Journal of Pharmaceutical and Biomedical Analysis, 36:1019-1027.
Chakraborty, S. Liao, I. C. Adler, A. Leong, K. W. (2009). Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Advanced Drug Delivery Reviews, 61:1043-1054.
Chandler, S. F. Dodds, J. H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasidine in callus cultures of Solanum lacinitum. Plant Cell Reports, 2:105.
Chandy, T. Sharma, C. P. (1996). Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads. Biomaterials, 17:61- 66.
Chat, O. A. Najar, M. H. Mir, M. A. Rathe, G. M. Dar, A. A. (2011). Effects of surfactant micelles on solubilization and DPPH radical scavenging activity of Rutin. Journal of Colloid and Interface Science, 355:140-149.
Chen, H. C. Jao, W. C. Yang, M. C. (2009). Characterization of gelatin nanofibers electrospun using ethanol/formic acid/water as a solvent. Polymers Advanced Technologies. 2009, 20:98-103.
Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150:805-817.
Croisier, F. Jerome, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49:780-792.
Dinis, T. C. P. Madeira, V. M. C. Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315:161-169.
Dash, M. Chiellini, F. Ottenbriteb, R. M. Chiellini, E. (2011). Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36:981-1014.
Decker, E.A. Welch, B. (1990). Role of ferritin as a lipid oxidation datalyst in muscle food. Journal of Agricultural and Food Chemistry, 38:674-677.
Finch, C.A. (1973). Polyvinyl Alcohol Properties and Applications, John Wiley & Sons, London.
Formhals, A. (1934). Process and apparatus for preparing artificial threads. US Patent, 1, 975, 504.
Ganeshpurkar, A. Saluja, A. K. (2016). The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, in press.
Ghorani, B. Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51:227-240.
Gu, S. Y. Wang, Z. M. Ren, J. Zhang, C. Y. (2009). Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing. Materials Science and Engineering C, 29:1822-1828.
Guo, R. Wei, P. Liu, W. (2007). Combined antioxidant effects of rutin and Vitamin C in Triton X-100 micelles. Journal of Pharmaceutical and Biomedical Analysis, 43:1580-1586.
Haider, A. Haider, S. Kang, I. K. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, In Press.
Huang, Z. M. Zhang, Y. Z. Kotaki, M. Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63:2223-2253.
Idris, A. Zain, N. Suhaimi, M.S. (2008). Immobilization of Baker’s yeast invertase in PVA–alginate matrix using innovative immobilization technique. Process Biochemistry, 43:331-38.
Jayakumar, R. Prabaharan, M. Sudheesh Kumar, P.T. Nair, S.V. Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 29:322-337.
Jayakumar, R. Menon, D. Manzoor, K. Nair, S. V. Tamura, H. (2010). Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydrate Polymers, 82:227-232.
Jaworek, A. Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: an overview. Journal of Electrostatics, 66:197-219.
Jiang, T. Carbone, E. J. Lo, K. W.-H. Laurencin, C. T. (2015). Electrospinning of polymer nanofibers for tissue regeneration. Progress in Polymer Science, 46:1-24.
Kai, D. Liow, S. S. Jun Loh, X. J. (2014). Biodegradable polymers for electrospinning: Towards biomedical applications. Materials Science and Engineering C 45:659-670.
Khil, M. S. Cha, D. I. Kim, H. Y. Kim, I. Bhattarai, N. (2003). Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67:675-679.
Khor, E. Lim, L. Y. 2003. Implantable applications of chitin and chitosan. Biomaterials 24:2339-2349.
Kumbar, S. G. Nukavarapu, S. P. James, R. Nair, L. S. Laurencin, C. T. (2008). Elec-trospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissueengineering. Biomaterials, 29:4100-41077.
Kumar, M. N. V. R. (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers, 46:1-27.
Liang, D. H. Hsiao, B. S. Chu, B. (2007). Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Advanced Drug Delivery Reviews, 59:1392–1412.
Lyubina, S. Strelina, Y. Nudga, I. A. Plisko, Y. A. Bogatova, I. N. (1983). Flow birefringence and viscosity of chitosan solution in acetic acid of various ionic strengths, Journal of Polymer Science, 25:1964-1982.
Majd, S. A. Khorasgani, M. R. Moshtaghian, S. J. Talebi, A. Khezri, A. (2016). Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules, 92:1162-1168.
Pashikanti, S. de Alba, D. R. Boissonneault, G. A. Cervantes-Laurean, D. (2010). Rutin metabolites: Novel inhibitors of nonoxidative advanced glycation end products. Free Radical Biology & Medicine, 48:656-663.
Paul, W. Sharma, C. P. (2004). Chitin and alginates wound dressings: a short review. Trends in Biomaterials & Artificial Organs, 18:18-23.
Pelipenko, J. Kocbek, P. Kristl, J. (2015). Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. International Journal of Pharmaceutics, 484 : 57-74.
Persano, L. Camposeo, A. Tekmen, C. Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering, 298 (2013) 504-520.
Prashanth, K. V. H. Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends in Food Science & Technology, 18:117-131.
Schneider, A. Wang, X. Y. Kaplan, D. L. Garlick, J. A. Egles, C. (2009). Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomaterialia, 5:2570–2578.
Sill, T. J. von Recum, H. A. (2008). Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, 29:1989-2006.
Stranger, J. Tucker, N. Staiger, M. (2009). Electrospinning, Smithers Rapra, Shrewsbury, Shropshire, GBR.
Singleton, V. L. Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolibdic phosphotungstic acid reagent. American Journal of Enology Viticulture, 16:144-158.
Slinkard, K. Singleton, V.L. (1977). Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28:49-55
Tan, L. Hu, J. L. Huang, H. H. Han, J. P. Hu, H. W. (2015). Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. International Journal of Biological Macromolecules, 79: 469-476.
Tharanathan, R. N. Kittur, F. S. (2003). Chitindthe undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43: 61-87.
Thenmozhi, S. Dharmaraj, N. Kadirvelu, K. Kim, H. Y. (2017). Electrospun nanofibers: New generation materials for advanced applications. Materials Science and Engineering B, 217:36-48.
Thong, C.C. Teo, D.C.L. Ng, C.K. (2016). Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Construction and Building Materials, 107: 172-180.
Usman, A. Zia, K. M. Zuber, M. Tabasum, S. Rehman, S. Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86:630-645.
Wadbua, P. Promdonkoy, B. Maensiri, S. Siri, S. (2010). Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. International journal of biological macromolecules, 46:493-450.
Wang, X. F. Ding, B. Li, B. Y. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16:229-241.
Wang, Y. Hsieh, Y. L. (2004). Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. Journal of Polymer Science Part A: Polymer Chemistry, 42:4289-4299.
Yahia, I. S. Keshk, S. M. A. S. (2017). Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Optics & Laser Technology, 90:197-200.
Yan, J. Guo, J. Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT- Food Science and Technology, 41: 1060-1066.
Yang, R. Li, H. Huang, M. Yang, H. Li, A. (2016). A review on chitosan-based flocculants and their applications in water treatment. Water Research, 95:59-89.
Yoo, H. S. Kim, T. G. Park, T. G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 61:1033-1042.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔