|
參考文獻 1Barratt, J.,Topham, P. Urine proteomics: the present and future of measuring urinary protein components in disease. Can Med Assoc J 177, 361-368 (2007). 2Thongboonkerd, V. Renal and Urinary Proteomics. Proteomics Clin Appl 2, 947-949 (2008). 3Quintana, L. F., Amanda Sole-Gonzalez, Susana G. Kalko, Elisenda Banon-Maneus, Manel Sole, Fritz Diekmann, et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J Am Soc Nephrol 20, 428-435 (2009). 4Yamamoto, T., Langham, R. G., Ronco, P., Knepper, M. A., Thongboonkerd, V. Towards standard protocols and guidelines for urine proteomics: a report on the Human Kidney and Urine Proteome Project (HKUPP) Symposium and Workshop. Proteomics 8, 2156-2159 (2008). 5Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R, Steen H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 3, 1052-1061 (2009). 6Aebersold, R., Mann, M. Mass spectrometry-based proteomics. Nature 422, 198-207 (2003). 7Pisitkun, T., Shen, R.-F. & Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101, 13368-13373 (2004). 8Ploeg, M., Aben, K. K., Kiemeney, L. A. The present and future burden of urinary bladder cancer in the world. World J Urol 27, 289-293 (2009). 9Witjes JA, Comperat E, Cowan NC, De Santis M, Gakis G, Lebret T, et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur Urol 65, 778-792 (2014). 10Palou J, Rodriguez-Rubio F, Huguet J, Segarra J, Ribal MJ, Alcaraz A, et al. Multivariate analysis of clinical parameters of synchronous primary superficial bladder cancer and upper urinary tract tumor. J Urol 174, 859-861 (2005). 11Lotan, Y. & Roehrborn, C. G. Cost-effectiveness of a modified care protocol substituting bladder tumor markers for cystoscopy for the followup of patients with transitional cell carcinoma of the bladder: a decision analytical approach. J Urol 167, 75-79 (2002). 12Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292, 1657-1661 (2007). 13Duijvesz, D., Luider, T., Bangma, C. H.,Jenster, G. Exosomes as biomarker treasure chests for prostate cancer. Eur urol 59, 823-831 (2011). 14Kulasingam, V., Diamandis, E. P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Rev Clin Oncol 5, 588-599 (2008). 15Oppenheim, J., Biragyn, A., Kwak, L.,Yang, D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62, ii17-ii21 (2003). 16Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20, 363-379 (2009). 17M Hunt, J., Tuder, R. Alpha 1 anti-trypsin: one protein, many functions. Curr Mol Med 12, 827-835 (2012). 18Hosseini-Beheshti, E., Pham, S., Adomat, H., Li, N., Guns, E. S. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics 11, 863-885 (2012). 19Yang P, Sun Z, Krowka MJ, Aubry MC, Bamlet WR, Wampfler JA , et al. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern Med 168, 1097-1103 (2008). 20Kuvibidila, S., Rayford, W. Correlation between serum prostate-specific antigen and alpha-1-antitrypsin in men without and with prostate cancer. J Lab Clin Med 147, 174-181 (2006). 21Rajendiran S, Parwani AV, Hare RJ, Dasgupta S, Roby RK, Vishwanatha JK. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1. Mol Cancer 13, 1 epup (2014). 22Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, N, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49, 466-477 (2006). 23Clague, M. J., Coulson, J. M., Urbe, S. Deciphering histone 2A deubiquitination. Genome Biol. 9, 1 epup (2008). 24Cole, A. J., Clifton-Bligh, R., Marsh, D. J. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer 22, T19-T33 (2015). 25Kondo, Y. , Issa, J.-P. J. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 23, 29-39 (2004). 26D''Arcy, P., Wang, X., Linder, S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 147, 32-54 (2015). 27Telu KH1, Abbaoui B, Thomas-Ahner JM, Zynger DL, Clinton SK, Freitas MA, et al. Alterations of histone H1 phosphorylation during bladder carcinogenesis. J Proteome Res 12, 3317-3326 (2013). 28Loddo M1, Kingsbury SR, Rashid M, Proctor I, Holt C, Young J, et al. Cell-cycle-phase progression analysis identifies unique phenotypes of major prognostic and predictive significance in breast cancer. Br J Cancer 100, 959-970 (2009). 29Bonenfant, D. et al. Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 6, 1917-1932, (2007). 30Fromont G, Roupret M, Amira N, Sibony M, Vallancien G, Validire P, et al. Tissue microarray analysis of the prognostic value of E-cadherin, Ki67, p53, p27, survivin and MSH2 expression in upper urinary tract transitional cell carcinoma. Eur Urol 48, 764-770 (2005). 31Nakanishi K1, Hiroi S, Tominaga S, Aida S, Kasamatsu H, Matsuyama S, et al. Expression of hypoxia-inducible factor-1alpha protein predicts survival in patients with transitional cell carcinoma of the upper urinary tract. Clin Cancer Res 11, 2583-2590 (2005). 32Shariat SF, Karakiewicz PI, Godoy G, Karam JA, Ashfaq R, Fradet Y, et al. Survivin as a prognostic marker for urothelial carcinoma of the bladder: a multicenter external validation study. Clin Cancer Res 15, 7012-7019 (2009). 33Saito K, Kawakami S, Ohtsuka Y, Fujii Y, Masuda H, Kumagai J, et al. The impact of preoperative serum C-reactive protein on the prognosis of patients with upper urinary tract urothelial carcinoma treated surgically. BJU international 100, 269-273, (2007). 34Lotan Y, Bagrodia A, Passoni N, Rachakonda V, Kapur P, Arriaga Y, et al. Prospective evaluation of a molecular marker panel for prediction of recurrence and cancer-specific survival after radical cystectomy. Eur Urol 64, 465-471, (2013). 35Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C., Yates, J. R. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113, 2343-2394 (2013). 36Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71 (1989). 37Wilm, M. Principles of electrospray ionization. Mol Cell Proteomics 10, M111. 009407 (2011). 38Tang, L., Kebarle, P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem 65, 3654-3668 (1993). 39Wilm, M., Mann, M. Analytical properties of the nanoelectrospray ion source. Anal Chem 68, 1-8 (1996). 40Juraschek, R., Dulcks, T. & Karas, M. Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10, 300-308 (1999). 41Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299-2301 (1988). 42Chen CJ, Lai CC, Tseng MC, Liu YC, Lin SY, Tsai FJ. et al. Simple fabrication of hydrophobic surface target for increased sensitivity and homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of peptides, phosphopeptides, carbohydrates and proteins. Anal Chim Acta 783, 31-38 (2013). 43Bonk, T., Humeny, A. MALDI-TOF-MS analysis of protein and DNA. Neuroscientist 7, 6-12 (2001). 44Bucknall, M., Fung, K. Y., Duncan, M. W. Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 13, 1015-1027 (2002). 45Yates, J. R., Cociorva, D., Liao, L., Zabrouskov, V. Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal Chem 78, 493-500 (2006). 46Mamyrin, B. Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Anal Mass Spectrom 206, 251-266 (2001). 47Doroshenko, V. M., Cotter, R. J. Ideal velocity focusing in a reflectron time-of-flight mass spectrometer. J Am Soc Mass Spectrom 10, 992-999 (1999). 48Lu, J. J., Tsai, F. J., Ho, C. M., Liu, Y. C., Chen, C. J. Peptide biomarker discovery for identification of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus strains by MALDI-TOF. Anal Chem 84, 5685-5692 (2012). 49Tang, N., Tornatore, P., Weinberger, S. R. Current developments in SELDI affinity technology. Mass Spectrom Rev 23, 34-44 (2004). 50Albrethsen, J. Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem 53, 852-858 (2007). 51Ye, H., Sun, L., Huang, X., Zhang, P., Zhao, X. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol Cell Biochem 343, 91-99 (2010).
|