跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝昊罡
研究生(外文):Hao-Gang Hsieh
論文名稱:郊區與工業區PM2.5無機氣膠系統之模擬與特性
論文名稱(外文):Modeling and characteristics of PM2.5 inorganic aerosol system in suburban and industrial areas
指導教授:楊禮豪
指導教授(外文):Li-Hao Young
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:210
中文關鍵詞:PM2.5時空分布熱力平衡模式無機氣膠系統氣膠含水量氣膠pH值
外文關鍵詞:PM2.5spatiotemporalthermodynamic equilibrium modelinorganic aerosol systemaerosol water contentaerosol acidity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討郊區與工業區之PM2.5無機氣膠系統特性與不同時空之差異。研究方法係利用於台中沙鹿郊區與高雄林園工業區為期一年之逐日手動及逐時半自動PM2.5水溶性鹽類與酸鹼氣體之採樣數據,並結合熱力平衡模式ISORROPIA II進行無機氣膠系統之模擬。結果顯示,沙鹿郊區與林園工業區採樣期間所測得之逐日PM2.5 平均濃度分別為37.3與54.2 µg/m3,且工業區PM2.5、NO3-與酸鹼氣體濃度皆高於郊區。針對PM2.5高濃度污染事件,沙鹿郊區主要可歸因於台中都會區與當地交通排放產生之其他未分析物質(例如有機物質),林園工業區則主要歸因於西部地區與高雄都會區交通或當地工業排放衍生之NO3-與其他未分析物質。模式模擬比對結果顯示,兩區以正演法亞穩態模擬一致性較好、差異較小。兩區之無機氣膠幾乎都以液相離子的形式存在。沙鹿郊區之逐日與逐時之無機氣膠含水量平均濃度為15.3與23.0 µg/m3,林園工業區之平均濃度為54.2與74.0 µg/m3。氣膠含水量會隨著相對濕度或無機氣膠濃度上升而增加。氣膠pH值會隨著無機氣膠含水量的下降或液相氣膠中H+濃度的增加而降低。
The objective of this study was to characterize the spatiotemporal distribution of PM2.5 inorganic aerosol system at a suburban site and an industrial site. Both daily and hourly measurements of PM2.5 water-soluble ions and acid/basic gases were taken over a year at both sites, with which the measured data were used in an inorganic aerosol thermodynamic equilibrium model, ISORROPIA II, to model the inorganic aerosol system. The results show that the average PM2.5 at the suburban and industrial site were 37.3 and 54.2 µg/m3, respectively, between which the industrial site had higher concentrations of PM2.5, NO3- and acid/basic gases. During high PM2.5 episodes, the increase of PM2.5 at the suburban site was likely related to unresolved chemical components (likely organics) associated with urban and traffic emissions. On the other hand, the increase of PM2.5 at the industrial site was likely related to NO3- and also unresolved chemical components from upwind traffic emissions and local industrial emissions. Forward-metastable modeling results showed the best agreement with the observations at both sites. The inorganic aerosol systems were predominantly presented in the liquid phase. The daily and hourly average concentrations of inorganic aerosol water content were 15.3 and 23.0 µg/m3 at the suburban site and 54.2 and 74.0 µg/m3 at the industrial site, respectively. The aerosol water content increased with increasing inorganic aerosol concentration or ambient relative humidity. The daily and hourly average aerosol pH were 2.67 and 2.31 at the suburban site and 3.09 and 3.12 at the industrial site, respectively. The aerosol pH decreased with decreasing aerosol water content or increasing liquid phase H+ concentration.
致謝 I
摘要 II
Abstract III
目錄 V
表目錄 IX
圖目錄 XV
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 PM2.5之定義與來源特性 3
2.2 PM2.5對人類健康的影響 4
2.3 PM2.5之化學組成 5
2.4 水溶性鹽類形成機制與其前趨物來源 8
2.5 PM2.5水溶性鹽類之含水量 10
2.6 PM2.5水溶性鹽類之酸鹼特性 13
2.7 無機氣膠之熱力平衡模式 14
第三章 研究方法 22
3.1 研究架構 22
3.2 採樣地點與時間 24
3.3 PM2.5水溶性鹽類與酸鹼氣體逐日手動採樣系統 26
3.3.1系統組成與原理 26
3.3.2 採樣方法 28
3.3.3 採樣後處理與水溶性鹽類之分析 30
3.3.4品保品管 32
3.4 PM2.5水溶性鹽類與酸鹼氣體逐時半自動採樣系統 39
3.4.1系統組成與原理 39
3.4.3 品保品管 41
3.5 氣象儀 43
3.6 無機氣膠之熱力平衡模式 44
3.7 資料統計與繪圖 46
第四章 結果與討論 74
4.1 田野驗證 74
4.1.1 沙鹿郊區數據之田野驗證 74
4.1.2 林園工業區數據之田野驗證 75
4.2 採樣期間兩地區之氣象條件與空污狀況 77
4.2.1 沙鹿郊區與林園工業區之氣象條件 77
4.2.2 郊區與工業區之空污狀況 79
4.3 兩地區PM2.5之水溶性鹽類與酸鹼氣體特性與時間變異 82
4.3.1 兩區特性、不同時間解析度採樣與區域間之差異 82
4.3.2 兩區之四季變異 86
4.3.3 兩區之逐時變異 90
4.3.4 兩區與國內其他PM2.5水溶性鹽類研究比較 92
4.4 兩區PM2.5高濃度污染事件之水溶性鹽類與酸鹼氣體特性 94
4.4.1 沙鹿郊區高污染事件日之特性 94
4.4.2 林園工業區高污染事件日之特性 96
4.4.3 沙鹿郊區PM2.5高濃度污染事件日之PM2.5可能來源分析 98
4.4.4 林園工業區PM2.5高濃度污染事件日之PM2.5可能來源分析 102
4.5 兩區PM2.5無機氣膠系統模擬之特性與比對 106
4.5.1 沙鹿郊區逐日採樣實測值與模式預測值之比對 106
4.5.2 沙鹿郊區逐時採樣實測值與模式預測值之比對 111
4.5.3 林園工業區逐日採樣實測值與模式預測值之比對 113
4.5.4 林園工業區逐時採樣實測值與模式預測值之比對 115
4.5.5 兩區逐日與逐時液與固相無機氣膠之模擬與特性 118
4.5.6兩區逐日與逐時氣膠含水量之模擬與特性 121
4.5.7 兩區逐日與逐時氣膠pH值之模擬與特性 125
第五章 結論與建議 198
5.1 結論 198
5.2 研究限制 203
5.3 建議 204
文獻參考 206
Ansari, A. S., Pandis, S. N.: Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior. Environmental Science & Technology 34(1): 71-77, 2000.
Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., Xu, W. Y.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmospheric Chemistry and Physics 14(12): 6417-6426, 2014.
Calvert, J. G., Stockwell, W. R.: Acid generation in the troposphere by gas-phase chemistry. Environmental Science & Technology 17(9): pp 428A-443A, 1983.
Chang, S. Y., Lee, C. T., Chou, C. C. K., Liu, S. C., Wen, T. X.: The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment 41: 1936-1949, 2006.
Chang, L. T. C., Tsai, J. H., Lin, J. M., Huang, Y. S., Chiang, H. L.: Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmospheric Research 99: 67-79, 2011.
Deshmukh, D. K., Deb, M. K., Tsai, Y. I., Mkoma, S. L.: Water soluble ions in PM2.5 and PM1 aerosols in Durg city, Chhattisgarh, India. Aerosol Air Quality. Research, 11: 696-708, 2011.
Fountoukis, C., Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols. Atmospheric Chemistry and Physics 7(17): 4639-4659, 2007.
Fountoukis, C., Nenes, A.: Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmospheric Chemistry and Physics 9(6): 2141-2156, 2009.
Franklin, M., Koutrakis, P., Schwartz, J.: The role of particle composition on the association between PM2.5 and mortality. Epidemiology (Cambridge, Mass.) 19(5): 680, 2008.
Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., Vineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., Loomis, D.: Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental Health Perspectives 122(9): 906–911, 2014.
He, K., Zhao, Q., Duan, F., Yang, F.: Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics Discussion 11: 25557-25603, 2011.
Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles." Atmospheric Chemistry and Physics Discussion 14: 27579-27618, 2015.
Hutchings, N. J., Sommer, S.G., Andersen, J. M., Asman, W. A. H.: A detailed ammonia emission inventory for Denmark. Atmospheric environment 35(2001): 1959-1968, 2001.
Ianniello, A., Speataro, F., Esposito, G., Allegrini, I., Hu, M., Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmospheric Chemistry and Physics 11: 10803-10822, 2011.
Khlystov, A., Satoshi, C. O., Takahama, S., Pandis, S. N.: Water content of ambient aerosol during the Pittsburgh Air Quality Study. Journal of Geophysical Research: Atmospheres 110(D07S10), 2005.
Li, Q. F., Lingjuan, W. L., Shah, S. B., Jayanty, R. K. M., Bloomfield, P. : Ammonia concentrations and modeling of inorganic particulate matter in the vicinity of an egg production facility in Southeastern USA. Environmental Science and Pollution Research 21(6): 4675-4685, 2004.
Nemitz, E., Sutton, M. A., Wyers, G. P., Jongejan, P. A. C.: Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl. Atmospheric Chemistry and Physics 4(4): 989-1005, 2004.
Nenes, A., Pandis, S. N., Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4(1): 123-152, 1998.
Shon, Z. H., Kim, K. H., Song, S. K., Jung, K., Kim, N. J., Lee, J. B.: Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric Environment 59: 540-550, 2012.
Tsai, Y. I., Chen, C. L.: Atmospheric aerosol composition and source apportionments toaerosol in southern Taiwan. Atmospheric Environment 40: 4751-4763, 2006.
Wang, X., Bi, X., Sheng, G., Fu, J.: Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment 119(1-3): 425-439, 2006.
Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B.: The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36(26): 4223-4234, 2002.
Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., Yin, L.: Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmospheric Research 106: 150-158, 2012.
溫志雄,「台灣一般大氣氣膠化學成份之連續監測及含水量之量測」國立中央大學 環境工程研究所,碩士論文,2002。
王秋森等,「氣膠技術學」新文京開發,2005。
李巧馨,「PM2.5水溶性鹽類與酸鹼氣體半自動監測與手動採樣之田野效能評估」 中國醫藥大學 職業安全衛生學系,碩士論文,2015。
林源海,「台中都會區大氣懸浮微粒化學組成與盛行能見度變化特性之探討」 國立中興大學 環境工程學系,碩士論文,2013。
張士昱,「易潮解無機氣膠含水特性之研究」 國立中央大學 環境工程學研究所,博士論文,2002。
陳士傑,「南台灣沿海地區大氣氣膠特徵探討」 國立屏東科技大學 環境工程與科學系,碩士論文,2011。

陳冠錡,「台中市沙鹿區 PM2.5水溶性鹽類與黑碳之組成特性與逐時變異」 中國醫藥大學 職業安全衛生學系,碩士論文,2015。
行政院環保署,「認識細懸浮微粒」,2015。
行政院環保署,「空氣污染排放清冊TEDS 9.0」,2013。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊