跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林美君
研究生(外文):Chutima Limtrakul
論文名稱:電解質對流體化床均質顆粒化程序從廢水中回收鋁之影響
論文名稱(外文):EFFECT OF ELECTROLYTES ON ALUMINUM RECOVERY FROM WASTEWATER BY FLUIDIZED-BED HOMOGENEOUS GRANULATION (FBHG) PROCESS
指導教授:盧明俊盧明俊引用關係
指導教授(外文):Ming-Chun Lu
口試委員:廖志祥林耀堅
口試委員(外文):Chih-Hsiang LiaoYao-Chien Lin
口試日期:2016-12-16
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:87
中文關鍵詞:流體化床均質顆粒化
外文關鍵詞:FLUIDIZED-BED HOMOGENEOUS GRANULATION
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
流體化床均質化顆粒技術,嘗試在無單晶晶種的狀態下,從已處理過之低濃度廢水,進行重金屬物質之回收,使其形成重金屬均質顆粒,同時達到有價之重金屬資源化並且改善水質。鋁已於工業革命的興起至今扮演不可或缺的角色,主要產物為鋁門窗、鍍鋁製品、鋁漆和混凝劑。在此鋁回收的研究中,主要探討水質的變化對結晶化的影響。因此,在不同濃度的硝酸鹽、硫酸鹽和磷酸鹽存在時,同時改變進流濃度變化,分別為20mg.L-1、50mg.L-1和100mg.L-1。實驗結果顯示在低濃度的電解質,於較鹼性的狀態下,鋁離子可達到99%的去除率。此外在造粒的過程中,極細微的顆粒明顯受到結晶化的影響減少許多,然而結晶體最大的尺寸約為0.25毫米。這種效應與水質的離子強度變化有關,離子強度可以促進細粒的晶核生成和聚集作用,但限制晶體生長。在探討去除廢水中鋁離子方面,流體化床中出流水pH值,雙氧水與鋁的莫耳比、電解質入流濃度的最佳操作條件參數為pH9.5、1.5和 20 mg·L-1。加入電解質使其與氧化鋁生成磷酸鋁、Al(H2O)2(SO4)2O3、Al2Ca4H20N2O22和Al2H19O18PS的均質顆粒。因生成物離子強度較為高,因此結晶化的結構較為氧化鋁結晶強,並且表面也更為平整。
Fluidized-bed homogeneous granulation (FBHG) process (without seeds) allows recovering heavy metals with high purity grade from water effluents. Aluminum is one of the main impurities in industrial. The major quantities of aluminum from painting, anodizing processes at major aluminum finishing plants, and mineral coagulant. In this work, the recovery of aluminum was performed to study the water matrix influence on crystallization. Thus, the removal and granulation of aluminum was performed in the presence of different electrolytes, namely sulfate (SO42-), nitrate (NO3-), and phosphate (PO43-) while varying influent electrolyte concentration at 20 mg.L-1, 50 mg.L-1 and 100 mg.L-1. It has been observed an improvement of the pollutant removal in the presence of low concentrations of electrolytes under more alkaline pH, with 99 % achieved, of aluminum removal. Furthermore, the crystal sizes were dramatically affected diminishing the number of fines the largest around 0.25 mm but also the crystals sizes. This effect has been associated to the changes on the water matrix ionic strength that promoted the nucleation and aggregation of fines but limited the crystal growth. The optimum operating conditions for the aluminum removal were determined and the effects of effluent pH, influent electrolyte concentration in the synthetic wastewater on the aluminum removal efficiency. The best operating condition of influent electrolytes concentration were at 20 mg.L-1, molar ratio of [H2O2 : Al] was 1.5, and pH of 9.5 of the effluent wastewater. The characterized granules were confirmed that without electrolytes was Al2O3. When addition of electrolytes (SO42-, NO3-, PO43-) and combined electrolytes transformed Al2O3 into Al(H2O)2(SO4)2O3, Bi nitro aluminate, aluminum phosphate, and Sanjuanite (Al2H19O18PS), respectively.
TABLE OF CONTENTS
Page
ACKNOWLEDGEMENT
III
ENGLISH ABSTRACT
IV
CHAINESE ABSTRACT
V
TABLE OF CONTENTS
VI
LIST OF TABLES
X
LIST OF FIGURES
XI
LIST OF NOMENCLATURE
XIV
CHAPTER 1 INTRODUCTION
1
1.1 Research Rationale
1
1.2 Objectives
3
1.3 Hypothesis
4
1.4 Scopes of the Study
4
CHAPTER 2 LITERATURE REVIEWS
6
2.1 Aluminum
6
2.1.1 Aluminum Property
6
2.1.2 Aluminum in Wastewater
7
2.1.3 Aluminum Removal from Wastewater
8
2.2 Wastewater chemical Treatment Process
9
2.3 Fluidized-Bed in Wastewater
11
2.4 Granulation in Fluidized-Bed Process
12
2.5 Typical of Fluidized-Bed Process
13
2.5.1 Fluidized-Bed Granulation (FBG) ………………………………
13
2.5.2 Fluidized-Bed Homogeneous Granulation (FBHG)
14
VII
Page
2.6 Parameter Effect ……………………………………
15
2.6.1 Reagent Dosage
15
2.6.2 Hydraulic Retention Time (HRT)
15
2.6.3 Supersaturation
15
2.6.4 pH Values
16
2.6.5 Molar ratio
16
2.7 Reverse Osmosis water (RO)
17
2.8 Electrolytes
17
2.9 Hydrogen Peroxide (H2O2)
19
2.10 Granules and Crystals
20
2.11 Solubility Product Constants (Ksp)
21
2.11.1 Carbonates
21
2.11.2 Hydroxides
22
2.12 Analytical Methods
23
2.12.1 Scanning Electron Microscope (SEM)
23 2.12.2 Inductively coupled plasma optical emission spectrometry (ICP-OES)
24
2.12.3 Energy Dispersive Spectroscopy (EDS)
25
2.12.4 X-ray Diffraction (XRD)
26
CHAPTER 3 METHODOLOGY
27
3.1 Materials and Chemicals
27
3.1.1 Chemicals
27
3.1.2 Fluidized-Bed Homogeneous Granulation Reactor
28
3.2 Experimental Procedures
30
VIII
Page
3.3 Presence of Electrolytes Experiments
31
3.4 Sampling and Analytical Methods
32
3.5 Crystal Size and Distribution
33
3.6 Physic-Chemical Analysis of Effluent Samples
34
3.7 Microstructural Analysis
35
CHAPTER 4 RESULTS AND DISCUSSION
37
4.1 Effect of pH without electrolytes
38
4.2 Effect of pH with electrolytes
40
4.3 Effect of molar ratio
46
4.4 Effect of single electrolyte
49
4.5 Effect of combined electrolytes
4.6 Size Distribution of granules
50
52
4.7 Effect of electrolytes concentration
4.8 Granules solid analysis
4.8.1 X-Ray Diffraction (XRD) analysis
4.8.2 Scanning Electron Microscopy (SEM) analysis
4.8.3 Elemental Distribution Spectroscopy (EDS) analysis
56
59
59
63
65
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS
68
5.1 Conclusions
68
5.2 Recommendations
69
REFERENCES
71
IX
Page
APPENDICES
76
Appendix A. Computing Formula
76
Appendix B. Design for experimental runs
81
X
LIST OF TABLES
Page
Table 2.1
Physicochemical properties
6
Table 2.2
Aluminum compounds and their Ksp values
22
Table 3.1
List of chemicals used
27
Table 3.2
The equipment in this study
29
Table 3.3
Summary of process conditions using continuous flow
31
Table 3.4
Plan of operating of electrolytes experiments
32
Table 4.1
Ionic strength of electrolytes species for runs
40
Table 4.2
EDS elemental composition analysis results
65
XI
LIST OF FIGURES
Page
Figure 2.1
Predominance zone diagram of aluminum species
9
Figure 2.2
Mechanisms of aluminum oxide granulation in FBG and FBHG
14
Figure 2.3 Diagram of Sample introduction to ICP-OES
25
Figure 3.1
Schematic diagram of the fluidized bed reactor
30
Figure 3.2
(a) 0.45 μm micro-syringe filter (b) Samples for analysis
32
Figure 3.3
Sieve for separate size of granules
34
Figure 3.4
Experimental Procedures
36
Figure 4.1
Effect of varying pH of effluent wastewater on removal and granulation efficiencies in aluminum wastewater solution (without electrolyte)
39
Figure 4.2
Effect of varying pH in difference influent concentration of SO42- addition ((a) 20 mg.L-1 (b) 50 mg.L-1 (c) 100 mg.L-1) on removal and granulation efficiencies
42
Figure 4.3
Effect of varying pH in difference influent concentration of NO3- addition ((a) 20 mg.L-1 (b) 50 mg.L-1 (c) 100 mg.L-1)
on removal and granulation efficiencies
44
Figure 4.4
Effect of varying pH in difference influent concentration of PO43- addition ((a) 20 mg.L-1 (b) 50 mg.L-1 (c) 100 mg.L-1)
on removal and granulation efficiencies
45
Figure 4.5
Effect of molar ratio concentration (SO42-, NO3- , and PO43- ) addition on removal and granulation efficiencies
48
XII
Page
Figure 4.6
Effect of electrolytes concentration (SO42-, NO3- and PO43- ) addition on removal and granulation efficiencies in aluminum wastewater solution
50
Figure 4.7
Effect of varying pH in difference concentration of electrolyte (combination between SO42- and PO43- ) addition on removal and granulation efficiencies
51
Figure 4.8
Figure 4.9
Figure 4.10
Granules size distribution at varying molar ratio of sulfate in concentration at 20 mg.L-1 , 50 mg.L-1, and 100 mg.L-1
Granules size distribution at varying molar ratio of nitrate in concentration at 20 mg.L-1 , 50 mg.L-1, and 100 mg.L-1
Granules size distribution at varying molar ratio of phosphate in concentration at 20 mg.L-1 , 50 mg.L-1, and 100 mg.L-1
53
54
55
Figure 4.11
Granules size distribution at varying influent electrolytes concentration
57
Figure 4.12
Cumulative Mass of Granule Particle Sizes
58
Figure 4.13
Photo-image of aluminum oxide products collected from experiment of H2O2:Al molar ratio (experimental condition: pH 9.5, H2O2:Al = 1.5, SO42- = 20 mg.L-1)
59
Figure 4.14
X-ray Diffraction (XRD) of granules formed at 1.5 molar ratio [H2O2 : Al], and 9.5 pH of precipitant without electrolytes
60
Figure 4.15
X-ray Diffraction (XRD) of granules formed at 1.5 molar ratio [H2O2 : Al], and 9.5 pH of precipitant with electrolytes of sulfate
61
XIII
Page
Figure 4.16
X-ray Diffraction (XRD) of granules formed at 1.5 molar ratio [H2O2 : Al], and 9.5 pH of precipitant with electrolytes of nitrate
61
Figure 4.17
X-ray Diffraction (XRD) of granules formed at 1.5 molar ratio [H2O2 : Al], and 9.5 pH of precipitant with electrolytes of phosphate
62
Figure 4.18
X-ray Diffraction (XRD) of granules formed at 1.5 molar ratio [H2O2 : Al], and 9.5 pH of precipitant with electrolytes of sulfate and phosphate.
62
Figure 4.19
SEM observation of aluminum oxide with magnification of (a) x500 (b) x10,000
63
Figure 4.20
SEM observation of aluminum crystallization with electrolytes in magnification of (a)sulfate, (c)nitrate, (e)phosphate, (g) combined ions (sulfate and phosphate) x500 and (b)sulfate, (d)nitrate, (f)phosphate, (h)combined ions (sulfate and phosphate) x10,000 at 100 mg.L-1 of electrolytes and 1.5 molar ratio
64
Figure 4.21
EDS analysis spectrums of experimental without electrolytes Figure 4.20 EDS analysis spectrums of experimental with SO42-, NO3- ,and PO43-
65
Figure 4.22
EDS analysis spectrums of experimental with SO42-, NO3- ,and PO43-
66
XIV
LIST OF NOMENCLATURE
Al(NO3)3
=
Aluminum nitrate
Al2O3
=
Aluminum oxide
Al(OH)3
=
Aluminum hydroxide
Al(OH)4-
=
Aluminate
AlPO4
=
Aluminum phosphate
Al2(SO4)3
=
Aluminum sulfate
EDS
=
Elemental Distribution Spectroscopy
FBHG
=
Fluidized-Bed homogeneous granulation
FBR
=
Fluidized-Bed reactor
g
=
gram
g.cm3
= gram per cubic centimeter
g.L-1
=
gram per liter
HRT
=
Hydraulic loading retention time
H2O2
=
Hydrogen peroxide
ICP
=
Inductively coupled plasma atomic emission spectroscopy
Ksp
= Solubility product constant
L
=
Liter
mg
=
Milligram
min
=
Minute
mL
=
Milliliter
mm
=
Millimeter
mM
=
Millimolar
Na2CO3
=
Sodium carbonate
PAC
=
Poly aluminum chloride
pHe
=
pH of effluent wastewater
SEM
=
Scanning electron microscope
XRD
=
X-Ray Diffraction
°C
=
Degree Celsius
μ
=
Ionic strength
%
=
Percentage
REFERENCES
Agustiono, T., Chan, G. Y. S., Lo, W., & Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals, 366, 409–426.
Algarra, M., Jiménez, M. V., Rodríguez-Castellón, E., Jiménez-López, A., & Jiménez-Jiménez, J. (2005). Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41. Chemosphere, 59(6), 779–786.
Ali, R. M., Hamad, H. A., Hussein, M. M., & Malash, G. F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions : Adsorption kinetics , isotherm , thermodynamic , mechanism and economic analysis. Ecological Engineering, 91, 317–332.
Bhuiyan, M. I. H., Mavinic, D. S., & Beckie, R. D. (2008). Nucleation and growth kinetics of struvite in a fluidized bed reactor, 310, 1187–1194.
Chen, C. S., Shih, Y. J., & Huang, Y. H. (2015). Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 279, 120–128.
Costodes, V. C. T., & Lewis, A. E. (2006). Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor : Fines production and column design, 61, 1377–1385.
Costodes, V. C. T., & Lewis, A. E. (2006). Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: Fines production and column design. Chemical Engineering Science, 61(5), 1377–1385.
72
Dan, A. J., Rom, M. A., Sidelnikova, N. S., Nizhankovskiy, S. V, Budnikov, A. T., Grin, L. A., & Kaltaev, K. S. (2008). Transformation of the Corundum Structure upon High- Temperature Reduction, 53(7), 1112–1118.
De Luna, M. D. G., Bellotindos, L. M., Asiao, R. N., & Lu, M. C. (2015). Removal and recovery of lead in a fluidized-bed reactor by crystallization process. Hydrometallurgy, 155, 6–12.
Demopoulos, G. P. (2009). Hydrometallurgy Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy, 96(3), 199–214.
Duan, J., & Gregory, J. (2003). Coagulation by hydrolysing metal salts, 102, 475–502.
Frances, A., Salcedo, M., Ballesteros, F. C., Vilando, A. C., & Lu, M. (2016). Nickel recovery from synthetic Watts bath electroplating wastewater by homogeneous fluidized bed granulation process. Separation and Purification Technology, 169, 128–136.
Guillard, D., & Lewis, A. E. (2001). Nickel Carbonate Precipitation in a Fluidized-Bed Reactor. Ind. Eng. Chem. Res., 5564–5569.
Guillard, D., & Lewis, A. E. (2002). Optimization of Nickel Hydroxycarbonate Precipitation Using a Laboratory Pellet Reactor, 3110–3114.
Hu, X., Liu, Y., Wang, H., & Zeng, G. (2014). Chemical Engineering Research and Design Adsorption of copper by magnetic graphene oxide-supported ␤ -cyclodextrin : Effects of pH , ionic strength , background electrolytes , and citric acid, 3(June), 675–683.
73
Huang, Y., Wu, D., Wang, X., Huang, W., Lawless, D., & Feng, X. (2016). Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Separation and purification technology. 158, 124-136.
La, E. J., & Rinc, G. J. (2014). Simultaneous removal of oil and grease , and heavy metals from arti fi cial bilge water using electro-coagulation / fl otation Oxidation e Reduction Potential Society of Automotive Engineers, 144, 42–50.
Liu, R., Ju, J., He, Z., Hu, C., Liu, H., & Qu, J. (2016). Colloids and Surfaces A : Physicochemical and Engineering Aspects Utilization of annealed aluminum hydroxide waste with incorporated fluoride for adsorptive removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 95–104.
Loiseau, T., Mellot-draznieks, C., Sassoye, C., Guillou, N., Huguenard, C., Taulelle, F., … March, R. V. (2001). Chemistry - Structure - Simulation or Chemistry - Simulation - Structure Sequences ? The Case of MIL-34 , a New Porous Aluminophosphate, (7), 9642–9651.
Malaysiana, S., Aluminium, P., & Minum, A. (2010). Removal of Aluminium from Drinking Water, 39(1), 51–55.
Mugwar, A. J., & Harbottle, M. J. (2016). Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314, 237–248.
Pannunzio-miner, E. V. (2011). Sanjuanite: AB initiocrystal-structure solution from laboratory power-diffraction data, complemented by FTIR spectroscopy and DT-TG analyses, 49, 835–847.
74
Pour, P. G., Takassi, M. A. L. I., & Hamoule, T. (2014). Removal of Aluminum from Water and Industrial Waste Water.
Quality, D. (1998). Aluminium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, 2.
Sahu, N. K., Sarangi, C. K., Dash, B., Tripathy, B. C., & Satpathy, B. K. (2015). Role of hydrazine and hydrogen peroxide in aluminium hydroxide precipitation from sodium aluminate solution. Transactions of Nonferrous Metals Society of China, 25(2), 615–621. http://doi.org/10.1016/S1003-6326(15)63644-5
Salcedo, A. F. M., Jr, B. F. C., & Lu, M. (2015). Recovery of nickel from industrial wastewater by homogeneous fluidized-bed granulation: effect of influent nickel concentration, CO3:Ni ratio and pH of the precipitant, (September), 3–5.
Saunders, F. M., Sezgin, M., & Kutz, R. G. (n.d.). Treatment of Aluminum Finishing Wastewater and Sludges.
Shi, S., Tan, Y., Jiang, D., Qin, S., & Guo, X. (2015). Removal of aluminum from silicon by electron beam melting with exponential decreasing power. Seperation and purifacation technology, 152, 32–36.
Somasani, S. L. (2012). Removal of Heavy Metals from Drinking Water by Adsorption onto Limestone with a Focus on Copper and Aluminum Applications.
Su, C. C., Dulfo, L. D., Dalida, M. L. P., & Lu, M. C. (2014). Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg:P molar ratio and seed. Separation and Purification Technology, 125, 90–96.
75
Su, C. C., Reano, R. L., Dalida, M. L. P., & Lu, M. C. (2014). Barium recovery by crystallization in a fluidized-bed reactor: Effects of pH, Ba/P molar ratio and seed. Chemosphere, 105, 100–105.
Sun, Z., Wang, H., Tong, H., & Sun, S. (2011). A Giant Polyaluminum Species S - Al 32 and Two Aluminum Polyoxocations Involving Coordination by Sulfate Ions S - Al 32 and S - K - Al 13, (11), 559–564.
Tai, C. Y., Chen, P. C., & Tsao, T. M. (2006). Growth kinetics of CaF 2 in a pH-stat fluidized-bed crystallizer, 290, 576–584.
Tai, C. Y., Hon, M. J., & Chen, P. (2011). Journal of the Taiwan Institute of Chemical Engineers A comparison of growth behavior between CaCO 3 and CaF 2 crystals in a constant-composition environment, 42, 435–440.
Tillard, M. (1999). y ) o i, 12(1983), 2–5.
Wu, H., Fan, G., Geng, L., Cui, X., & Huang, M. (2016). Scripta Materialia Nanoscale origins of the oriented precipitation of Ti 3 Al in Ti \ \ Al systems. SMM, 125, 34–38.
Zhou, P., & Huang, J. (1999). Heavy metal removal from wastewater in fludized bed reactor. Water Research, 33(8), 1918–1924.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top