跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥成
研究生(外文):CHEN,YEN-CHENG
論文名稱:抗垢劑對逆滲透薄層複合膜抗垢性能之影響
論文名稱(外文):Effect of Antiscalant Additive on the Fouling Problem of RO TFC Membranes
指導教授:陳世雄陳世雄引用關係
指導教授(外文):CHEN,SHIH-HSIUNG
口試委員:黃世梁陳世雄劉瑞美
口試委員(外文):HUANG,SHI-LIANGCHEN,SHIH-HSIUNGLIOU,RUY-MAY
口試日期:2017-06-28
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:102
中文關鍵詞:抗垢劑有機磷酸鹽薄層複合膜積垢
外文關鍵詞:AntiscalantPhosphonateThin Film CompositeFouling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用抗垢劑降低表面積垢技術已被發展多年,應用於膜分離程序可解決薄膜因積垢導致透水量下降的問題,延長薄膜壽命。本研究目的針對煉鋼製程廢水純化過程薄結垢問題之解決,研究開發新型抗垢劑並探討其對逆滲透(RO)薄層複合膜抗垢性能之影響,抗垢劑以有機磷酸鹽(PBTC)為主,透過無機鹽類、螯合劑、界面活性劑及聚合物等物質的添加進行試驗,觀察逆滲透(RO)薄膜的透水量、接觸角及官能基鑑定以評估抗垢劑的抗垢性能。其結果顯示,在PBTC 2mg/L下,氯化鐵、氯化鋁、氯化鋅及矽酸鈉的額外增加,會因水中鹼度的影響形成沉澱物而改變薄膜表面的粗糙度;脂肪胺型界面活性劑會因吸附作用在薄膜表面產生有機性沉積;PEG 400合併PBTC與既有的水中溶解性蛋白質作用易產生沉澱物而改變薄膜表面的粗糙度;聚乙烯亞胺因帶強陽電性與水中有機性溶解物產生較小而結實的膠羽不易沉積。本實驗室所開發的抗垢劑F7配方中,有機磷酸鹽與廢水中的鈣離子形成高溶解性的Ca-phosphonate錯合物,聚氧乙烯型非離子界面活性劑中的氫鍵直接與疏水性物質作用,有效減緩RO薄膜表面上生物質量的累積,相較於G品牌其透水率則高於2%。


Antiscalant has been developed to reducing the fouling layer of water treatment processes for many years, major solving the fouling problem of membrane and extending the membrane life time. The purpose of this study is to synthesize new antiscalants for the purification of steel industrial wastewater and to explore the antifouling efficiency of antiscalant in the RO TFC process. Based on the phosphonate (PBTC), incorporate the inorganic, chelating agents, surfactants and polymers were testes by using the cross flow RO unit. The performance of antiscalants were evaluated by permeation flux, membrane contact angle and functional group of scaling layer on membranes. The results showed that at PBTC 2mg/L, feeding the ferric chloride, aluminum chloride, zinc chloride and sodium silicate to the steelmaking wastewater, forming precipitant which to alter the surface roughness of membrane due to the change of water alkalinity. The fatty amine surfactant produced organic fouling on membrane due to adsorption on the membrane surface. PEG 400 with PBTC reacted with the soluble protein produce precipitant which to alter the surface roughness of membrane and permeation flux. Polyethyleneimine has strong cationic charge, can with dissolved organic matter to form smaller floc and less deposition was observed on surface of membrane. Antiscalant F7 contained phosphonate and polyoxyethylene nonionic surfactant to form Ca-phosphonate complexes, it can provide a strong hydrogen bonding with organic material and effective decreased the accumulation of biomass on the surface of membrane. It was found that the permeation flux of the antiscalant F7 is higher than commercial antiscalant ( G company supplied) over 2% .


目錄
摘要 ...………………………………………………………………….....Ⅰ
Abstract ...………………………………………………………………….Ⅱ
目錄 ...…………………………………………………………………….Ⅲ
圖目錄 ...……………………………………..……………………….…..Ⅵ
表目錄...…………………………………………………………………...Ⅸ
第一章 前言 ………………...………………………………………….….1
1.1薄層複合膜發展…………..…………………………………...…1
1.2研究目的..……………………………………………………...…2
第二章 文獻回顧……………………………………………………….......3
2.1 薄膜種類簡介………………………………………………...…..3
2.2 薄膜產水程序………………………………………………...…..4
2.3 薄膜改質方法………………………………………………...…..5
2.4 積垢(Fouling)…………………………………………………......6
2.5 抗垢劑(Antiscalant)…………………………………………...….11
2.5.1抗垢原理…………………………………………..……...11
2.5.2抗垢劑種類……………………………………………….13
2.6廢水前處理(Pretreatment)……………………………………….15
第三章 研究方法與設備…………………………………………………16
3.1藥品………………………………………………………………16
3.2設備儀器…………………………………………………………18
3.3操作流程…………………………………………………………20
3.4廢水來源…………………………………………………………21
3.5測試水質…………………………………………………………22
第四章 結果與討論………………………………………………………23
4.1水質模擬分析……………………………………………………23
4.2有機磷酸鹽(PBTC)添加在對薄膜透水率的影響……………...26
4.3廢水中添加不同濃度氯化鋅對透水率的影響…………………32
4.4廢水中添加不同濃度氯化鐵對透水率的影響…………………36
4.5廢水中添加不同濃度氯化鋁對透水率的影響…………….……41
4.6廢水中添加不同濃度矽酸鈉對透水率的影響………………….44
4.7廢水中添加不同濃度EDTA對透水率的影響………………….48
4.8廢水中添加不同濃度SP 003對透水率的影響…………………52
4.9廢水中添加不同濃度PEG 400對透水率的影響……………….56
4.10廢水中添加不同濃度Y12D對透水率的影響………………...61
4.11廢水中添加不同濃度Ecotek 410對透水率的影響………...…65
4.12廢水中添加不同配方對透水率的影響………………………...69
第五章 結論…………………………………………………………..…75
參考文獻




圖目錄
圖2-1 PA-TFC膜接枝聚合...………………………………..……6
圖2-2 結垢生成機制……………………………………….…….8
圖2-3微生物附著薄膜表面驅動力………………………….…10
圖2-4有機積垢形成機制……………………………………….11
圖2-5 碳酸鈣的晶格扭曲……………………………………….12
圖2-6顆粒間的分散作用……………………………………….14
圖2-7 傳統與非傳統廢水前處理……………………………….15
圖3-1 PBTC之化學結構圖……………………………………16
圖3-2 EDTA之化學結構圖…………………………………...16
圖3-3 Y12D之化學結構圖.…………………………………...17
圖3-4 NF級平板式掃流過濾系統..…………………………...18
圖3-5 實驗流程圖………………………………………………20
圖3-6 某南部鋼廠廢水純化系統…………...………….........…21
圖4-1 水質高濃度軟體分析…..…………………………………24
圖4-2 水質低濃度軟體分析……..………………………………25
圖4-3 PBTC在不同時間變化下對透水率的影響…………….28
圖4-4 PBTC對RO膜表面接觸角影響………………........….29
圖4-5 PBTC劑量變化下對透水率的影響……………........….30
圖4-6 PBTC對RO膜表面結垢物FTIR分析圖……........…...31
圖4-7 添加不同濃度氯化鋅對透水率的影響…………………..34
圖4-8 氯化鋅對RO膜表面的接觸角影響…….……….......…..35
圖4-9 添加不同濃度氯化鐵對透水率的影響……….….......…..39
圖4-10 氯化鐵對RO膜表面的接觸角影響…………..…….….40
圖4-11 添加不同濃度氯化鋁對透水率的影響………...……….42
圖4-12 氯化鋁對RO膜表面的接觸角影響…………………….43
圖4-13 添加不同濃度矽酸鈉對透水率的影響………..…….….46
圖4-14 矽酸鈉對RO膜表面的接觸角影響...…………………..47
圖4-15 添加不同濃度EDTA對透水率的影響……………........49
圖4-16 EDTA對RO膜表面的接觸角影響………….…….….50
圖4-17 EDTA對RO膜表面結垢物FTIR分析圖…………….51
圖4-18 添加不同濃度SP 003對透水率的影響……….........…..53
圖4-19 SP 003對RO膜表面的接觸角影響………..……..…...54
圖4-20 SP003對RO膜表面結垢物FTIR分析圖………..…...55
圖4-21 添加不同濃度PEG 400對透水率的影響…………...….58
圖4-22 PEG 400對RO膜表面的接觸角影響……………..….59
圖4-23 PEG 400對RO膜表面結垢物FTIR分析圖…….…...60
圖4-24 添加不同濃度Y12D對透水率的影響……………..…62
圖4-25 Y12D對RO膜表面的接觸角影響…………….…….63
圖4-26 Y12D對RO膜表面結垢物FTIR分析圖………..…..64
圖4-27 添加不同濃度Ecotek 410對透水率的影響……….…66
圖4-28 Ecotek-410對RO膜表面的接觸角影響……….…….67
圖4-29 Ecotek 410對RO膜表面結垢物FTIR分析圖……....68
圖4-30 添加不同配方對透水率的影響……………….......…..70
圖4-31 配方變化對RO膜表面的接觸角影響……….……....71
圖4-32 F4對RO膜表面結垢物FTIR分析圖………………..72
圖4-33 F5對RO膜表面的結垢物FTIR分析圖……………..73
圖4-34 F7對RO膜表面的結垢物FTIR分析圖……………..74

















表目錄
表2-1 影響膠體積垢因素……………………………………....7
表3-1 廢水水質分析……………………………………………22
表4-1 在不同pH下存在的鋅鹽物種……………………….…33
表4-2 混凝劑分類與優缺點……………………………………38
表4-3 RO濃水水質矽酸鹽濃度建議規範………………...…...45



1.L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technolog , and today’s challenges, water research 43 (2009) 2317– 2348
2.J. Kim, M. J. Park, M. Park, H. K. Shon, S.H. Kim, J. H. Kim, Influence of colloidal fouling on pressure retarded osmosis, Desalination 389 (2016) 207–214
3.M.C. Amiri, M. Samiei, Enhancing permeate flux in a RO plant by controlling membrane fouling, Desalination 207 (2007) 361–369
4.A. Sweity, T. R. Zere, I. David, S. Bason, Y. Oren, Z. Ronen, M. Herzberg, Side effects of antiscalants on biofouling of reverse osmosis membranes in brackish water desalination, Journal of Membrane Science 481 (2015) 172–187
5.W. Yu, N. Graham, Y. Yang, Z. Zhou, L. C. Campos, Effect of sludge retention on UF membrane fouling: The significance of sludge crystallization and EPS increase, Water Research 83 (2015) 319–328
6.Y.T. Chiou, M.L. Hsieh, H.H. Yeh, Effect of algal extracellular polymer substances on UF membrane fouling, Desalination 250 (2010) 648–652
7.D. Rana, T. Matsuura, Surface modifications for antifouling membranes, Chem. Rev. 110 (2010) 2448–2471
8.H. Z. Shafi, Z. Khan, R. Yang, K. K. Gleason, Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling, Desalination 362 (2015) 93–103
9.H. Choi, Y. Jung, S. Han, T. Tak, Y.N. Kwon , Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine , J. Membr. Sci. 486 (2015)97–105
10.E. M. Van Wagner, A. C. Sagle, M. M. Sharma, Y. H. La, B. D. Freeman, Surface modification of commercial polyamide desalination membranes usingpoly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance, J. Membr. Sci. 367 (2011) 273–287.
11.C. Wang, G. K. Such, A. Widjaya, H. Lomas, G. Stevens, F. Caruso, S. E. Kentish, Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization, J. Membr. Sci. 409–410 (2012) 9–15
12.M. Liu, Q. Chen, L. Wang, S. Yu, C. Gao , Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA), Desalination 367 (2015)11–20
13.K. J. Varin, N. H. Lin, Y. Cohen, Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes, J. Membr. Sci. 446 (2013)472481
14.Q. Cheng, Y. Zheng, S. Yu, H. Zhu, X. Peng, J. Liu, J. Liu, M. Liu, C. Gao, Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of
N-isopropylacrylamide followed by acrylic acid, Journal of Membrane Science 447 (2013) 236–245
15.D. Hasson, H. Shemer, A. Sher, State of the art of friendly “green” scale control inhibitors: a review article, Ind. Eng. Chem. Res. 50 (2011) 7601–7607
16.A. Antony, J. H. Low, S. Gray, A. E. Childress, P. L. Clech, G. Leslie, Scale formation and control in high pressure membrane water treatment systems: A review, Journal of Membrane Science 383 (2011) 1–16
17.M. Gryta, Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation, Desalination 285 (2012) 170–176
18.Y. O. Rosenberg, I. J. Reznik, S. Z.Nahum, J. Ganor, The effect of pH on the formation of a gypsum scale in the presence of a phosphonate antiscalant, Desalination 284 (2012) 207–220
19.R. A. Al-Juboori, T. Yusaf, Biofouling in RO system: Mechanisms, monitoring and controlling, Desalination 302 (2012) 1–23
20.K. Chon, J. Cho, Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant:
電子全文 電子全文(網際網路公開日期:20220713)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top