跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江豪育
研究生(外文):Jiang Hao-Yu
論文名稱:直接滲透法回收含硼廢水之研究
論文名稱(外文):Recovery of water from boron-contained wastewater using forward osmosis system
指導教授:賴振立
指導教授(外文):Lai, Cheng-Lee
口試委員:賴振立陳世雄黃世梁
口試委員(外文):Lai, Cheng-LeeChen, Shih-HsiungHuang, Shih-Liang
口試日期:2017-06-28
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:醋酸纖維素直接滲透含硼廢水
外文關鍵詞:Cellulose AcetateForward Osmosisboron-contained wastewater
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用醋酸纖維素自行製備之平板膜應用於直接滲透 (FO) 技術及壓力延遲滲透(PRO)技術試驗,利用NaCl溶液做為驅動液(Draw Solution),用以探討兩系統對含硼廢水(Feed Solution)回收之效益,再藉由兩種技術探討各製備條件之薄膜對於滲透量之影響。製備不同醋酸纖維濃度之薄膜,藉由電子顯微鏡(SEM)探討薄膜結構、接觸角用於探討膜表面之親疏水性。
實驗操作變因如下(1)不同醋酸纖維濃度薄膜用於FO/PRO技術試驗上以探討薄膜CA濃度對滲透量之影響。(2)變化Draw Solution以探討流速大小對滲透量之影響,也尋找其他可能影響薄膜滲透量之因素。(3)Draw Solution之濃度以3、4、5wt%作為變化,探討不同濃度對滲透量影響。以最佳條件之薄膜作為Feed Solution 溫度變化之實驗薄膜。(4)Feed Solution 溫度25、40、50、60℃作為變化,探討溫度變化下對滲透量之影響。

The main objective of this research is to prepare some membranes suitable for the forward osmosis (FO) and Pressure Retarded Osmosis (PRO) process applies in the boron-contained wastewater recovery technology. Thin, high boron-selective and porous cellulose acetate (CA) composite membranes will be prepared. SEM, and Contact Angle analyzer use to characterize the membranes. By conducting the batch FO and PRO process, the water flux and salt rejection for the prepared membrane were measured.

NaCl as draw solution, experiments of filtration by forward osmosis system were conducted under various operating conditions including polymer concentration, draw solution concentration, operation feed solution temperature. Expect find the optimize operation conditions for water flux and salt rejection.

摘要 Ⅰ
ABSTRACT Ⅱ
致謝 III
目錄 IV
圖目錄 Ⅴ
表目錄 Ⅵ
第一章、前言 1
1-1、研究動機 1
1-2、研究目的 3
第二章、文獻回顧 4
2-1、薄膜單元 4
2-1-1、定義 4
2-1-2、材質 4
2-1-3、結構與分離應用 5
2-1-4、製備方法 9
2-2、直接滲透(FO)及壓力延遲滲透(PRO) 11
2-2-1、原理 11
2-2-2、滲透過程 13
2-2-3、溶液及薄膜之選擇 14
2-2-4、薄膜結垢 15
2-3、醋酸纖維(Cellulose Acetate) 16
2-4、硼酸(Boric Acid) 17
第三章、實驗材料與方法 18
3-1、實驗藥品 18
3-2、實驗儀器與器材 18
3-2-1、感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Atomic Emission Spectroscopy,簡稱ICP/AES) 20
3-2-2、多功能超高解析場發射型掃描式電子顯微鏡(UR-SEM) 22
3-2-3、表面接觸角測量儀(Contact Angle) 23
3-3、薄膜製備 24
3-3-1、CA鑄膜溶液配製 24
3-3-2、平板膜製備 24
3-4、實驗模組 26
3-5、實驗方法 29
3-5-1、平板膜實驗步驟 29
第四章、結果與討論 31
4-1、醋酸纖維薄膜結構探討 32
4-2、薄膜表面接觸角測量 35
4-3、醋酸纖維濃度變化 37
4-3-1、醋酸濃度變化對滲透量之影響 37
4-3-2、醋酸濃度變化對FO/PRO系統之滲透量影響 39
4-4、Draw Solution流速變化對滲透量之影響 49
4-5、Draw Solution濃度變化 54
4-6、Feed Solution 溫度變化 64
第五章、結論 71
5-1、醋酸纖維平板膜 71
5-2、建議 73
參考文獻 74

圖目錄
圖2-1、FO及PRO薄膜分離技術示意圖 11
圖2-2、FO、PRO及RO系統溶液傳遞 13
圖2-3、FO、PRO及RO對於水通量、△π及△P對比 13
圖3-1、ICP偵測原理 21
圖3-2、接觸角 23
圖3-3、平板薄膜製備流程 25
圖3-4、平板膜模組俯視圖 27
圖3-5、平板膜模組側視圖 28
圖3-6、平板膜模組試驗設備 29
圖4-1、醋酸纖維濃度變化之平板膜斷面SEM圖(100倍) 33
圖4-2、醋酸纖維濃度變化之平板膜斷面SEM圖(100倍) 34
圖4-3、醋酸纖維濃度變化對接觸角之影響 36
圖4-4、醋酸纖維濃度變化對滲透量之影響 38
圖4-5、醋酸纖維濃度變化對FO系統之通量影響(3wt%NaCl) 43
圖4-6、醋酸纖維濃度變化對PRO系統之通量影響(3wt%NaCl) 44
圖4-7、醋酸纖維濃度變化對FO系統之通量影響(4wt%NaCl) 45
圖4-8、醋酸纖維濃度變化對PRO系統之通量影響(4wt%NaCl) 46
圖4-9、醋酸纖維濃度變化對FO系統之通量影響(5wt%NaCl) 47
圖4-10、醋酸纖維濃度變化對PRO系統之通量影響(5wt%NaCl) 48
圖4-11、Draw Solution流速變化對FO系統之滲透量影響(3、4、5wt%NaCl) 51
圖4-12、Draw Solution流速變化對PRO系統之滲透量影響(3、4、5wt%NaCl) 52
圖4-13、Draw Solution濃度變化對FO/PRO系統滲透量之影響(14wt%) 57
圖4-14、Draw Solution濃度變化對FO/PRO系統滲透量之影響(15wt%) 58
圖4-15、Draw Solution濃度變化對FO/PRO系統滲透量之影響(16wt%) 59
圖4-16、Draw Solution濃度變化對FO/PRO系統滲透量之影響(17wt%) 60
圖4-17、Draw Solution濃度變化對FO/PRO系統滲透量之影響(18wt%) 61
圖4-18、Draw Solution濃度變化對FO/PRO系統滲透量之影響(20wt%) 62
圖4-19、Feed Solution 溫度變化對滲透量之影響(40℃) 68
圖4-20、Feed Solution 溫度變化對滲透量之影響(50℃) 69
圖4-21、Feed Solution 溫度變化對滲透量之影響(60℃) 70


1.T.S. Chung, X. Li, R.C. Ong, Q. Ge, H.L. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opinion Chem. Eng. 1 (2012) 246–257.
2.I.C. Escobar, A summary of challenges still facing desalination and water reusein: I.C. Escobar, A.I. Schäfer (Eds.), Sustainable Water for the FutureWater Recycling Versus Desalination, Elsevier Science, the Netherlands, 2010, pp. 389–397.
3.M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science 333 (2011) 712–717.
4.S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci. 396 (2012) 1–21.
5.K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination–development to date and future potential, J. Membr. Sci. 370 (2011) 1–22.
6.T.S. Chung, S. Zhang, K.Y. Wang, J.C. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination 287 (2012) 78–81.
7.L. Shao, B.T. Low, T.S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future, J. Membr. Sci. 327 (2009) 18–31.

8.SW Srinivas(Vasu)Veerapaneni,Ben Klayman,R. Bond,Desalination Facility Design and Operation for Maximum Efficiency,Technical Report,Water Research Foundation,2011。
9.Ronan K. McGovern, John H. Lienhard V On the potential of forward osmosis to energetically outperform reverse osmosis desalination, Journal of Membrane Science, November 2014, Pages 245-250
10.賴振立,高分子醋酸纖維素中空纖維膜之製備與直接滲透薄膜蒸餾複合技術應用,行政院國家科學委員會,2012。
11.A. Altaee, G. Zaragoza, H. Rost van Tonningen, Comparison between Forward Osmosis-Reverse Osmosis and Reverse Osmosis processes for seawater desalination, Desalination, 336, 2014, 50-57.
12.X. Zheng, D. Chena, Q. Wanga, Z. Zhang, Seawater desalination in China: Retrospect and prospect, Chemical Engineering Journal, 242, 2014, 404-413.
13..S. Chung, X. Li, R.C. Ong, Q. Ge, H.L. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opinion Chem. Eng. 1 (2012) 246–257.
14.S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci. 396 (2012) 1–21.


15.T.S. Chung, S. Zhang, K.Y. Wang, J.C. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination 287 (2012) 78–81.
16.T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70–87.
17.Y. Liu, B.X. Mi, Combined fouling of forward osmosis membranes: synergistic foulant interaction and direct observation of fouling layer formation, J. Membr. Sci. 407–408 (2012) 136–144.
18.G. Cai, C. Gorey, A. Zaky, I. Escobar, C. Gruden, Thermally responsive membrane-based microbiological sensing component for early detection of membrane biofouling, Desalination 270 (2011) 116–123.
19.S. Zhang, K.Y. Wang, T.S. Chung, Y.C. Jean, H.M. Chen, Molecular design of the cellulose ester-based forward osmosis membranes for desalination, Chem. Eng. Sci. 66 (2011) 2008–2018.
20.B.X. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci. 348 (2010) 337–345.
21.S. Zhang, K.Y. Wang, T.S. Chung, H.M. Chen, Y.C. Jean, G. Amy, Well constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci. 360 (2010) 522–535.

22.M. Mulder, Basic Principle of Membrane Technology, Kluwer Academic Publishers, Dorechet, 1996.
23.M. Mulder, 膜技術基本原理,清華出版社,1996。
24.黃軾育,磺酸化聚亞醯胺改質薄膜之製備及滲透蒸發分離之應用,嘉南藥理大學環境工程與科學校碩士論文,2009。
25.黃仲濤、曾昭槐、鐘邦克,無機膜技術及其應用,中國石化出版社,1998。
26.Y. Wibisono, E. R. Cornelissen, A.J.B. Kemperman, W. G. J. van der Meer, K. Nijmeijer, Two-phase flow in membrane processes: A technology with a future, Journal of Membrane Science, 453, 2014, 566-602.
27.F. Ma, J. Boo, H. Sohn, S. Kim, Feasibility test of spray-coating method for patterning of vapor phase-polymerized poly(3,4-ethylenedioxythiophene) thin film, Materials Research Bulletin, 57, 2014, 197-202.
28.M. Terrones, N. Grobert, J. P. Zhang, H. Terrones, J. Olivares, W. K. Hsu, J. P. Hare, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films, Chemical Physics Letters, 285, 1998, 299-305.
29.J. Ren, J. Zhou, M. Deng, Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process, Separation and Purification Technology, 74, 2010, 119-129.

30.S. Zhao, L. Zou, C. Y. Tang, D. Mulcahy, Recent developments in forward osmosis: Opportunities and challenges, Journal of Membrane Science, 396, 2012, 1-21.
31.F. Helfer, C. Lemckert, Y. G. Anissimov, Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review, Journal of Membrane Science, 453, 2014, 337-358.
32.S. Phuntsho, S. Vigneswaran, J. Kandasamy, S. Hong, S. Lee, H. K. Shon, Influence of temperature and temperature difference in the performance of forward osmosis desalination process, Journal of Membrane Science, 415–416, 2012, 734-744.
33.K. Lutchmiah, A. R. D. Verliefde, K. Roest, L. C. Rietveld, E. R. Cornelissen, Forward osmosis for application in wastewater treatment: A review, Water Research, 58, 2014, 179-197.
34.N. T. Hancock, P. Xu, M. J. Roby, J. D. Gomez, T. Y. Cath, Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale, Journal of Membrane Science, 445, 2013, 34-46.
35.D. L. Shaffer, N. Y. Yip, J. Gilron, M. Elimelech, Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy, Journal of Membrane Science, 415–416, 2012, 1-8.
36.F.Fu,S.Zhang,S.Sun,K.Wang, T. Chung, POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation, Journal of Membrane Science, 443, 2013, 144-155.
37.T. Chung, S. Zhang, K. Y. Wang, J. Su, M. M. Ling, Forward osmosis processes: Yesterday, today and tomorrow, Desalination, 287, 2012, 78-81.
38.W. Tang, H. Y. Ng, Concentration of brine by forward osmosis: Performance and influence of membrane structure, Desalination, 224, 2008, 143-153.
39.Q. Yang, K. Y. Wang, T. Chung, A novel dual-layer forward osmosis membrane for protein enrichment and concentration, Separation and Purification Technology, 69, 2009, 269-274.
40.V. Sant’Anna, L. D. F. Marczak, I. C. Tessaro, Membrane concentration of liquid foods by forward osmosis: Process and quality view, Journal of Food Engineering, 111, 2012, 483-489.
41.X. Zhang, Z. Ning, D. K. Wang, J. C. Diniz da Costa, A novel ethanol dehydration process by forward osmosis, Chemical Engineering Journal, 232, 2013, 397-404.
42.R.W. Holloway, T.Y. Cath, K.E. Dennett, A.E. Childress Forward osmosis for concentration of anaerobic digester centrate Proceedings of the AWWA Membrane Technology Conference and Exposition, Phoenix, AZ (2005)


43.T. Y. Cath, A. E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, Journal of Membrane Science, 281, 2006, 70-87.
44.K. Lutchmiah, L. Lauber, K. Roest, D. J. H. Harmsen, J. W. Post, L. C. Rietveld, J. B. van Lier, E. R. Cornelissen, Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation, Journal of Membrane Science, 460, 2014, 82-90.
45.A. Achilli, T. Y. Cath, A. E. Childress, Selection of inorganic-based draw solutions for forward osmosis applications, Journal of Membrane Science, 364, 2010, 233-241.
46.R. Alnaizy, A. Aidan, M. Qasim, Copper sulfate as draw solute in forward osmosis desalination, Journal of Environmental Chemical Engineering, 1, 2013, 424-430.
47.R. E. Kravath, J. A. Davis, Desalination of sea water by direct osmosis, Desalination, 16, 1975, 151-155.
48.Q. Ge, M. Ling, T. Chung, Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future, Journal of Membrane Science, 442, 2013, 225-237.



49.T.Y. Cath, S. Gormly, E.G. Beaudry, M.T. Flynn, V.D. Adams, A.E. Childress Membrane contactor processes for wastewater reclamation in space. I. Direct osmotic concentration as pretreatment for reverse osmosis Journal of Membrane Science, 257 (2005), pp. 85–98
50.R.W. Holloway, A.E. Childress, K.E. Dennett, T.Y. Cath Forward osmosis for concentration of anaerobic digester centrate Water Research, 41 (2007), pp. 4005–4014
51.R.J. York, R.S. Thiel, E.G. Beaudry Full-scale experience of direct osmosis concentration applied to leachate management Proceedings of the Seventh International Waste Management and Landfill Symposium (Sardinia ‘99), Cagliari, Italy (1999)
52.A. Achilli, T.Y. Cath, E.A. Marchand, A.E. Childress The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes Desalination, 239 (2009), pp. 10–21
53.C.R. Martinetti, A.E. Childress, T.Y. Cath High recovery of concentrated RO brines using forward osmosis and membrane distillation Journal of Membrane Science, 331 (2009), pp. 31–39
54.L. Shuiping, T. Lianjiang, H. Weili, L. Xiaoqiang, C. Yanmo, Cellulose acetate nanofibers with photochromic property: Fabrication and characterization, Materials Letters, 64, 2010, 2427-2430.

55.F. EL-Ashhab, L. Sheha, M. Abdalkhalek, H. A. Khalaf, The influence of gamma irradiation on the intrinsic properties of cellulose acetate polymers, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14, 2013, 46-50.
56.D. Zavastin, I. Cretescu, M. Bezdadea, M. Bourceanu, M. Drăgan, G. Lisa, I. Mangalagiu, V. Vasić, J. Savić, Preparation, characterization and applicability of cellulose acetate–polyurethane blend membrane in separation techniques, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370, 2010, 120-128.
57.C. M. Kee, A. Idris, Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating, Journal of Industrial and Engineering Chemistry, 18, 2012, 2115-2123.
58.M. Zafar, M. Ali, S. M. Khan, T. Jamil, M. T. Z. Butt, Effect of additives on the properties and performance of cellulose acetate derivative membranes in the separation of isopropanol/water mixtures, Desalination, 285, 2012, 359-365.
59.D. Y. Koseoglu-Imer, N. Dizge, I. Koyuncu, Enzymatic activation of cellulose acetate membrane for reducing of protein fouling, Colloids and Surfaces B: Biointerfaces, 92, 2012, 334-339.


60.H. Kamal, F. M. Abd-Elrahim, S. Lotfy, Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation, Journal of Radiation Research and Applied Sciences, 7, 2014, 146-153.
61.A. Rahimpour, S. S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties, Journal of Membrane Science, 305, 2007, 299-312.
62.M. Sairam, E. Sereewatthanawut, K. Li, A. Bismarck, A. G. Livingston, Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution, Desalination, 273, 2011, 299-307.
63.R. Haddada, E. Ferjani, M. S. Roudesli, A. Deratani, Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination, Desalination, 167, 2004, 403-409.
64.M. Sossna, M. Hollas, J. Schaper, T. Scheper, Structural development of asymmetric cellulose acetate microfiltration membranes prepared by a single-layer dry-casting method, Journal of Membrane Science, 289, 2007, 7-14.


65.D. H. N. Perera, S. K. Nataraj, N. M. Thomson, A. Sepe, S. Hüttner, U. Steiner, H. Qiblawey, E. Sivaniah, Room-temperature development of thin film composite reverse osmosis membranes from cellulose acetate with antibacterial properties, Journal of Membrane Science, 453, 2014, 212-220.
66.F. Z. Khan, M. Shiotsuki, Y. Nishio, T. Masuda, Synthesis, characterization, and gas permeation properties of the silyl derivatives of cellulose acetate Journal of Membrane Science, 312, 2008, 207-216.
67.A. Idris, L. K. Yet, The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance, Journal of Membrane Science, 280, 2006, 920-927.
68.C. M. Kee, A. Idris, Permeability performance of different molecular weight cellulose acetate hemodialysis membrane, Separation and Purification Technology, 75, 2010, 102-113.
69.W. Chou, D. Yu, M. Yang, C. Jou, Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers, Separation and Purification Technology, 57, 2007, 209-219.
70.李中光、劉新校、邱惠敏(103),含硼廢水之處理方法,萬能科技大學 環境工程系,環保簡訊 / 第 22 期。
71.V.M. Shorrocks The occurrence and correction of boron deficiency Plant Soil, 193 (1997), pp. 121–148
72.K. Miwa, J. Takano, H. Omori, M. Seki, K. Shinozaki, T. Fujiwara Plants tolerant of high boron levels Science, 318 (2007), p. 1417
73.USEPA, Preliminary Investigation of Effects on the Environment of Boron, Indium, Nickel, Tin, Vanadium, and Their Compounds, EPA 56/2-75-005A, 1975.
74.USEPA, Toxicological Review of Boron and Compounds, EPA 635/04/052, 2004.
75.J.J. Camacho, J. Rexach, A. Gonzalez-Fontes Boron in plants: deficiency and toxicity•J. Integr. Plant Biol., 50 (2008), pp. 1247–1255
76.WHO, Addendum to Guidelines for Drinking Water Quality, Second ed., vol. 2, Geneva, 1998.
77.National Standards of People's Republic of China, Standards for Drinking Water Quality, GB 5749–2006.
78.H. Hyung, J.H. Kim A mechanistic study on boron rejection by sea water reverse osmosis membranes J. Membr. Sci., 286 (2006), pp. 269–278
79.感應耦合電漿放射光譜儀ICP/OES 2100DV,A&B Analytical & Bio Science Instrument Co.Ltd博精儀器股份有限公司, 博精儀器教育訓練教材

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top