跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子軒
研究生(外文):HUANG, TZU-HSUAN
論文名稱:中空纖維膜接觸法吸收二氧化碳之研究
論文名稱(外文):CO2 Absorption in Hollow fiber Membrane Contactor
指導教授:賴振立
指導教授(外文):LAI, CHENG-LEE
口試委員:黃世梁陳世雄賴振立
口試委員(外文):HUANG, SHIH-LIANGCHEN, SHIH-HSIUNGLAI, CHENG-LEE
口試日期:2017-06-28
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:中空纖維膜聚偏二氟乙烯聚丙烯乙醇胺化學吸收二氧化碳
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
全球二氧化碳排放總量與日劇增,是造成全球溫度上昇的主因,探討二氧化碳移除技術越來越受重視,台灣已公告室內空氣品質管理法,規範室內空氣二氧化碳濃度。本研究主要是利用自製之聚偏二氟乙烯(PVDF)中空纖維膜、聚丙烯(PP)中空纖維膜及聚偏二氟乙烯(PVDF)中空纖維管膜,藉由多功能超高解析場發射型掃描式電子顯微鏡(SEM) 探討中空纖維膜結構、孔洞大小、表面孔隙等。使用中空纖維膜組實驗設備填充乙醇胺進行二氧化碳吸收實驗,探討PVDF中空纖維膜、PP中空纖維膜、PVDF中空纖維管膜吸收量,進氣流量對吸收量、操作時間對吸收量之影響。
PP中空纖維膜組於氣體流量試驗中,可得知氣體流量操作參數最佳為1 L/min,氣體流量超過9 L/min時,膜組對二氧化碳之吸收能力會大幅調低。
PP中空纖維膜組於氣體流量試驗中,氣體流量最佳操作參數為1 L/min。自行製備之PVDF中空纖維膜,濃度以18 wt%為最佳。 15 wt% PVDF中空纖維管膜經浸泡於20% NMP/H2O溶液15秒後進行熱處理,可有效改善中空纖維管膜易滲漏吸收劑之問題,10 ml乙醇胺吸收劑對二氧化碳吸收量可達0.4215 g/min。



The device performance of the PP and PVDF hollow fiber membrane carbon dioxide absorption system was investigated experimentally in the present study.
Porous PVDF hollow fiber membranes will be prepared. Membrane structure, pore size, and surface porosity were characterizing by SEM.
Monoethanolamine(MEA) used for preparing absorbing solution. Hollow fiber membrane contactor was used for carbon dioxide capture experiment system, were conducted various operating conditions including air flux and oeration time.
PP hollow fiber membrane on gas flow tests, optimal operation parameters for gas flow was 1 l/min. itself, Optimal concentration of PVDF hollow-fiber membrane was 18 wt%. 15 wt% PVDF tubla membranes by dipping in 20% NMP solution for 15 seconds and heat treatment, can effectively improve the leakage problems. Carbon dioxide absorbed by ethanolamine up to 0.04215 g/min*ml.

摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅷ
表目錄 XI
第一章、前言 1
1-1、研究動機 1
1-2、研究目的 3
第二章、文獻回顧 4
2-1、中空纖維薄膜單元 4
2-1-1、定義 4
2-1-2、薄膜分類 4
2-1-3、結構 5
2-1-4、製備方法 7
2-1-5、薄膜分離程序 9
2-2、化學吸收二氧化碳 11
2-2-1、原理 11
2-2-2、吸收溶液之選擇 11
2-2-3、脫附方法 13
2-3、聚偏二氟乙烯(polyvinylidene difluoride) 13
2-4、聚丙烯(Polypropylene) 15
第三章、實驗材料與方法 16
3-1、實驗材料 16
3-1-1、實驗藥品 16
3-1-2、實驗儀器與器材 16
3-2、薄膜製備 17
3-2-1、PVDF鑄膜溶液配製 17
3-2-2、中空纖維膜之製備 17
3-2-3、中空纖維管膜之熱處理 18
3-3、實驗模組 19
3-4、實驗方法 20
3-4-1、二氧化碳吸收實驗步驟 20
第四章、結果與討論 21
4-1、PVDF中空纖維膜吸收二氧化碳實驗 21
4-1-1、CO2吸收量變化 21
4-1-2、進氣流量變化 28
4-1-3、PVDF中空纖維膜SEM 32
4-2、PP中空纖維膜吸收二氧化碳實驗 34
4-2-1、進氣流量變化 34
4-3、PVDF中空纖維管膜吸收二氧化碳實驗 41
4-3-1、CO2吸收量變化 41
4-3-2、進氣流量變化 49
4-3-3、PVDF中空纖維管膜SEM 53
4-4、PVDF中空纖維管膜經熱處理後測漏實驗 54
4-4-1、17.5%NMP/H2O熱處理測漏測試結果 54
4-4-2、20%NMP/H2O熱處理測漏測試結果 56
4-5、PVDF中空纖維管膜經熱處理後吸收二氧化碳實驗 59
4-5-1、CO2吸收量變化 59
4-5-2、進氣流量變化 66
4-5-3、經熱處理後PVDF中空纖維管膜SEM 70
4-6、中空纖維膜組總吸附量之比較 74
4-7、中空纖維膜表面特性 76
4-8、中空纖維膜組吸收高濃度二氧化碳實驗 77
4-9、連續式中空纖維膜管膜組吸收二氧化碳實驗 78
第五章、結論 81
5-1、結論 81
參考文獻 84

1.陳寶祺,以氨水吸收二氧化碳探討吸收與結晶現象之研究,龍華科技大學學報第二十五期,2008
2.李孟玲,四烷基銨氨基酸離子液體水溶液應用於二氧化碳捕捉,國立清華大學化學工程學系碩士論文,2015
3.行政院環保署公告資料
4.朱長樂,膜科學技術,高等教育出版社,2004
5.M. Mulder, 膜技術基本原理,清華出版社,1996
6.邱定紘,醋酸纖維膜製備及直接滲透之應用,嘉南藥理大學碩士論文,2014
7.蔡珣,石玉龍,周建主,現代薄膜材料與技術,華東理工大學出版社,2007
8.M . Mulder , Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1991.
9.D. A. DellaSala, Freshwater and Global Change: Wellspring of Life, Reference Module in Earth Systems and Environmental Sciences, 2013.
10.F. Ma, J. Boo, H. Sohn, S. Kim, Feasibility test of spray-coating method for patterning of vapor phase-polymerized poly(3,4-ethylenedioxythiophene) thin film, Materials Research Bulletin, 57, 197-202, 2014.
11.M. Terrones, N. Grobert, J. P. Zhang, H. Terrones, J. Olivares, W. K. Hsu, J. P. Hare, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films, Chemical Physics Letters, 285, 299-305, 1998.
12.W. hang, Y. Xu, Z. Yu, S. Lu, X. Wang, Separation of acetic acid/water mixtures by pervaporation with composite membranes of sodium alginate active layer and microporous polypropylene substrate, Journal of Membrane Science, 451, 135-147, 2014.
13.J. Ren, J. Zhou, M. Deng, Morphology transition of asymmetric polyetherimide flat sheet membranes with different thickness by wet phase-inversion process, Separation and Purification Technology, 74, 119-129, 2010.
14.L. Gao, B. Tang, P. Wu, An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry–wet phase inversion, Journal of Membrane Science, 326, 168-177, 2009.
15.Q. Wu, B. Liu, M. Li, L. Wan, Z. Xu, Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights, Journal of Membrane Science, 437, 227-236, 2013.
16.Y. Chul Woo, Y. Kim, Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation, Journal of Membrane Science, 74-84, 2016.
17.K. Min Song.W. Hi Hong, Dehydration of ethanol and isopropanol using tubular type cellulose acetate membrane with ceramic support in pervaporation process, Journal of Membrane Science, 27-33, 1997.
18.G. Srinivasan,S. Sundaramoorthy, Separation of dimethyl phenol using a spiral-wound RO membrane — Experimental and parameter estimation studies, Desalination, 170-181, 2009.
19.M. Darestani, V. Haigh, Sara J. Couperthwaite, Graeme J. Millar, Hollow fibre membrane contactors for ammonia recovery: Current status and future developments, Journal of Environmental Chemical Engineering, 1349-1359, 2017.
20.S.P. Sun,S.Y. Chan, T.S. Chung, Structural Control and Chemical Functionalization of Dual-Layer Nanofiltration Hollow Fiber Membranes for Efficient Waste Water Treatment, Procedia Engineering, 635-636, 2012.
21.S. Sorlini, F. Gialdini, C. Collivignarelli, Removal of cyanobacterial cells and Microcystin-LR from drinking water using a hollow fiber microfiltration pilot plant, Desalination, 106-112, 2013.
22.J. Lee, C. Kim, Enhanced mass transfer rate of methane via hollow fiber membrane modules for Methylosinus trichosporium OB3b fermentation, Journal of Industrial and Engineering Chemistry, 149-152, 2016.
23.C. Makhloufi, Ammonia based CO2 capture process using hollow fiber membrane contactors, Journal of Membrane Science, 236-246, 2014.
24.S. Suren, U. Pancharoen, S. Kheawhom, Simultaneous extraction and stripping of lead ions via a hollow fiber supported liquid membrane: Experiment and modeling,Journal of Industrial and Engineering Chemistry, 2584-2593, 2014.
25.A. Gabelman, Hollow fiber membrane contactors, Journal of Membrane Science, 61-106, 1999
26.K. Scott, INTRODUCTION TO MEMBRANE SEPARATIONS,Handbook of Industrial Membranes, 3-185, 1995
27.林佳璋,劉文宗,二氧化碳回收技術,工業技術研究院化學工業研究所
28.G.S. Goff, G.T. Rochelle, Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes, Ind. Eng. Chem. Res, 2513-2521, 2006
29.F. Chu, L. Yang, CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns, Energy, 495-505, 2016
30.H. Pashaei, M.N. Zarandi, Experimental study and modeling of CO2 absorption into diethanolamine solutions using stirrer bubble column, Chemical Engineering Research and Design, 32-43, 2017
31.M.K. Aroua, M.Z. Haji-Sulaiman, Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus, Separation and Purification Technology, 153-162, 2002
32.C. Nwaoha, Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends, Journal of Natural Gas Science and Engineering, 742-750, 2016
33.J. Yuan, M. Fan, Amine-functionalized poly(ionic liquid) brushes for carbon dioxide adsorption , Chemical Engineering Journal, 903-910, 2017
34.山豐化工股份有限公司,溶劑化學吸收,2008。
35.陳秋萍,聚乙烯共乙烯醇-聚偏二氟乙烯複合膜於滲透蒸發與蒸氣滲透之探討,中原大學化學工程學系碩士學位論文,2005。
36.N. Li, C. Xiao, S. An, X. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination, Vol.250, 530-537, 2010.
37.F. Liu, N. A. Hashim, Y. Liu, M. R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes, Journal of membrane Science, Vol.375, 1-27, 2011.
38.Y. Huang, The crystallization and crystal transition of PVDF in PAN nano-tube , Polymer, 4710-4718, 2013.
39.H. Liu, C. Xiao, X. Hu, M. Liu, Post-treatment effect on morphology and performance of polyurethane-based hollow fiber membranes through melt-spinning method, Journal of Membrane Science, 427, 326-335, 2013.
40.黃信翰,新式中空纖維膜之製備技術及滲透蒸發之應用,嘉南藥理大學環境工程與科學校碩士論文,2011。
41.P. Zhang, Y. Wang, Z. Xu, H. Yang, Preparation of poly (vinyl butyral) hollow fiber ultrafiltration membrane via wet-spinning method using PVP as additive, Desalination, 278, 186-193, 2011.
42.X. Ding, Y. Cao, H. Zhao, L. Wang, Interfacial morphology between the two layers of the dual-layer asymmetric hollow fiber membranes fabricated by co-extrusion and dry-jet wet-spinning phase-inversion techniques, Journal of Membrane Science, 444, 482-492, 2013.
43.P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives, Desalination, 93-99, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊