跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉姮妤
研究生(外文):LIOU, HENG-YU
論文名稱:聚乙烯亞胺處理後的老鼠胚胎纖維母細胞之微RNA表現生物資訊分析
論文名稱(外文):The RNA Contents Of Extracellular Vesicles In HeLa Cells Treated With Polyethyleneimine-DNA Complexes
指導教授:郭榮華郭榮華引用關係
指導教授(外文):KUO, JUNG-HUA
口試委員:鄭淨月詹明修郭榮華
口試委員(外文):JENG, JING-YUEHJAN, MING-SHIOUKUO, JUNG-HUA
口試日期:2017-06-19
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:藥學系
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:聚乙烯亞胺microRNA京都百科全書基因組(KEGG)DIANA miRPath
外文關鍵詞:PolyethyleniminemicroRNAsKyoto Encyclopedia of Genes and Genomes (KEGG)DIANA miRPath
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
  聚乙烯亞胺(PEI)是非病毒核酸傳送系統中最為廣泛使用的陽離子性高分子之一。儘管PEI在基因傳送系統中具有很大的應用潛力,但PEI已被證明會影響體外和體內基因表現的調控。過去關於PEI引發之細胞基因調控作用之研究主要基於編碼被翻譯成蛋白質的mRNA。然而,最近的研究已經證明非編碼RNAs與複雜的細胞發育系統和各種人類疾病息息相關。在這些非編碼RNA之中,microRNA(miRNA)長約22個核苷酸,主要在基因表達的轉錄後調控中起重要作用,使其成為治療疾病應用的潛在目標。
  因此,本篇將探討在PEI處理後的老鼠纖維母細胞中先前確定其目標基因受到調節的miRNA的表現。目標基因的分子路徑分析使用“京都百科全書基因組(KEGG)”數據庫的DIANA miRPath v.3.0進行。透過此研究可以更深入地了解PEI引起的細胞分子作用路徑。

Poly(ethylenimine) (PEI) is one of the most intensively used cationic polymers in non-viral nucleic acid delivery. Despite of great potentials of the applications in gene delivery systems, PEI has been shown to influence the regulations of gene expression in vitro and in vivo. Previous studies on PEI-induced gene regulation have primarily been based on encoding mRNAs that are translated into proteins. However, recent studies have demonstrated that non-coding RNAs are closely related to complex cellular development systems and various human diseases. Among these non-coding RNAs, microRNAs (miRNAs) are approximately 22 nucleotides long and primarily play important roles in the post-transcriptional regulation of gene expression, making them potential targets for therapeutic applications. Therefore, we explored the regulated miRNAs and identified their target genes in PEI-treated mouse embryonic fibroblast cells. The pathway analysis of target genes was performed using DIANA miRPath v.3.0, which is based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Our study may provide a deeper insight into the molecular pathways in cells caused by PEI.
目 錄
中文摘要………………………………………………………………………I
Abstract…………………………………………………………………………II
誌謝……………………………………………………………………………III
目錄……………………………………………………………………………IV
第一章、 緒論…………………………………………………………………1
1.1基因治療與載體………………………………………………………1
1.2聚乙烯亞胺……………………………………………………………5
1.3非編碼RNA(non-coding RNAs; ncRNA)介紹…………………………7
1.4微核糖核酸(microRNA;miRNA)………………………………..……8
1.5 DIANA資料庫(DIANA LAB TOOLS WEBPAGE)與KEGG簡介.…19
1.6研究動機與目的………………………………………………………23
第二章、 材料與方法…………………………………………………………24
2.1 DIANA資料庫(DIANA LAB TOOLS WEBPAGE)……….…………24
第三章、 結果與討論…………………………………………………………33
3.1 DIANA TOOLs資料庫搜尋結果整理………………………..………33
3.2 各種KEGG分子路徑分析……………………………………..……35
3.3 相關miRNAs文獻中被証實整理……………………………………48
3.4此次實驗與之前實驗之差異性………………………………………49
3.5結論……………………………………………………………………49
第四章、 參考文獻……………………………………………………………50

參考文獻
1.Cheng SH, Smith AE. Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther. 2003;10,1275-1281.
2.Elder EM, Lotze MT, and Whiteside TL.Successful culture and selection of cytokine gene-modified human dermal fibroblasts for the biologic therapy of patients with cancer. Hum. Gene Ther. 1996;7,479-487.
3.Tan Y, Xu M, Wang W, Zhang F, Li D,Xu X, Gu J, Hoffman RM. IL-2 gene therapy of advanced lung cancer patients. Anticancer Res. 1996;16,1993-1998.
4.Ruben J. Boada. RNA interference and nonviral target gene therapy of experiment brain cancer. The journal of the American society for experiment neuro therapeutics vol 2, 2005;139-150.
5.Gill DR, Southern KW, Mofford KA, et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997;4(3):199-209.
6.Tae Gwan Park a, Ji Hoon Jeong b, Sung Wan Kim. Current status of polymeric gene delivery systems. Drug Delivery Reviews. 58(2006);467-486.
7.Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med. 2010;16(5-6):222-229.
8.De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17(2):113-126.
9.Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, Tahir N, Ijaz S, Al-Kassas R, Löbenberg R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17(3):401-426.
10.Tros de Ilarduya C, Sun Y, Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;14;40(3):159-170.
11.Luana RMM. Aps, Milene B. Tavares, Julio HK. Rozenfeld, M. Teresa Lamy ,Luís CS. Ferreira, Mariana OD. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA. Journal of Biotechnology 2016;228:58-66.
12.Laure L, Alessandra L, Spela K, Gregor S, Véronique P, Gaëlle V. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opinion on Drug Delivery.
2016;13(2):295-310.
13.Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58(4):467-486.
14.Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials.
2008;29(24-25):3477-3496.
15.Lungu CN, Diudea MV, Putz MV, Grudziński IP. Linear and Branched PEIs (Polyethylenimines) and Their Property Space. Int J Mol Sci. 2016 Apr 13;17(4):555.
16.Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21(1):149-57.
17.Boussif O, Lezoualc`h F, Zanta MA, et al. Aversatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A.
1995;92(16):7297-7301
18.Parhamifar L, Andersen H, Wu L, Hall A, Hudzech D, Moghimi SM. Polycation-mediated integrated cell death processes. Adv Genet. 2014;88:353-398.
19.McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. Wiley Interdiscip Rev RNA.
2015;6(2):173-189.
20.Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3-9.
21.Huang YT, Hsu T, Kelsey KT, Lin CL. Integrative analysis of micro-RNA, gene expression, and survival of glioblastoma multiforme. Genet Epidemiol. 2015;39(2):134-143.
22.Pasquinelli AE, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale MQ, Baguñà J. Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev. 2003;5(4):372-378.
23.Bashirullah A, Pasquinelli AE, Kiger AA, Perrimon N, Ruvkun G, Thummel CS. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev Biol. 2003;259(1):1-8.
24.Mao C, Liu H, Chen P, Ye J, Teng L, Jia Z, Cao J. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells. Oncotarget. 2015;6(8):5707-5719.
25.David P. MicroRNA Target Recognition and Regulatory Functions. Cell.2009, 136 (2): 215–233.
26.Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122(4):553-563.
27.Esquela-Kerscher A, Johnson SM, Bai L, Saito K, Partridge J, Reinert KL, Slack FJ. Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev Dyn. 2005;234(4):868-877.
28.Ariyoshi J, Momokawa D, Eimori N, Kobori A, Murakami A, Yamayoshi A. Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC. Bioconjug Chem. 2015;26(12):2454-2460.
29.Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14(10A):1902-1910.
30.Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957-1966.
31.Weber MJ. New human and mouse microRNA genes found by homology search. FEBS J. 2005;272(1):59-73.
32.Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775-783.
33.Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241-247.
34.Guo ZW, Xie C, Yang JR, Li JH, Yang JH, Zheng L. MtiBase: a database for decoding microRNA target sites located within CDS and 5'UTR regions from CLIP-Seq and expression profile datasets. Database (Oxford). 2015; pii: bav102.
35.Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet. 2014;5:100. doi: 10.3389/fgene.2014.00100. eCollection 2014.
36.Qu G, Kruszka K, Plewka P, Yang SY, Chiou TJ, Jarmolowski A, Szweykowska-Kulinska Z, Echeverria M, Karlowski WM. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics. 2015;16:1009.doi:10.1186/s12864-015- 2221-x.
37.Kannu P, Campos-Xavier AB, Hull D, Martinet D, Ballhausen D, Bonafé L. Post-axial polydactyly type A2, overgrowth and autistic traits associated with a chromosome 13q31.3 microduplication encompassing miR-17-92 and GPC5. Eur J Med Genet. 2013 ;56(8):452-457.
38.Warnecke-Eberz U, Chon SH, Hölscher AH, Drebber U, Bollschweiler E. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol.
2015;36(6):4643-4653.
39.Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15524-15529.
40.Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882-891.
41.Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753-3756.
42.Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786-792.
43.Takashima A, Faller DV. Targeting the RAS oncogene. Expert Opin Ther Targets. 2013;17(5):507-531.
44.Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004 10;279(50):52361-52365.
45.Lin CW, Jan MS, Kuo JH., Exploring MicroRNA Expression Profiles Related to the mTOR Signaling Pathway in Mouse Embryonic Fibroblast Cells Treated with Polyethylenimine. Mol Pharm. 2015;12(8):2858-2868.
46.Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res. 1998;15(9):1332-1339.
47.Regnström K, Ragnarsson EG, Fryknäs M, Köping-Höggård M, Artursson P. Gene expression profiles in mouse lung tissue after administration of two cationic polymers used for nonviral gene delivery. Pharm Res. 2006;23(3):475-482.
48.Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm. 2010;7(3):727-737.
49.Li C, Liu Z, Yang F, Liu W, Wang D, Dong E, Wang Y, Wu CI, Lu X. siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget.
2015;6(25):21603-21613.
50.Merkel OM, Beyerle A, Beckmann BM, Zheng M, Hartmann RK, Stöger T, Kissel TH. Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials. 2011;32(9):2388-2398.
51.Voelcker V, Gebhardt C, Averbeck M, Saalbach A, Wolf V, Weih F, Sleeman J, Anderegg U, Simon J. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp Dermatol. 2008;17(2):100-107.
52.Lin CW, Jan MS, Kuo JH. Autophagy-related gene expression analysis of wild-type and atg5 gene knockout mouse embryonic fibroblast cells treated with polyethylenimine. Mol Pharm. 2014 2;11(9):3002-3008.
53.Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC, Chuang EY. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 2012;7(8):e42390.
54.Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20.
55.Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 2011;39(Database issue):D202-209.
56.Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495-500.
57.Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278-1284.
58.Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203-1217.
59.Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37(Database issue):D105-110.
60.Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 2006;12(2):192-197.
61.Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res.
2011;39(Database issue):D163-169.
62.Yang JH, Shao P, Zhou H, Chen YQ, Qu LH. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 2010;38(Database issue):D123-130.
63.Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154-158.
64.Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36(Database issue):D149-153.
65.Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res. 2007;35(Database issue):D149-155.
66.Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S, Hofacker IL. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 2006;34(Database issue):D135-139.
67.Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38(Database issue):D806-813.
68.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30.
69.DIANA TOOLS, THE DIANA LAB TOOLS WEBPAGE. http://diana.imis.athena-innovation.gr/DianaTools/index.php
Accessed 2017.
70.Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40(Web Server issue):W498-504.
71.Wu CX, Cheng J, Wang YY, Wang JJ, Guo H, Sun H., Microrna Expression Profiling of Macrophage Line Raw264.7 Infected by Candida Albicans. Shock. 2017;47(4):520-530.
72.Camera DM, Ong JN, Coffey VG, Hawley JA., Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle. Front Physiol. 2016;7:87.
73.Geng J, Liu Y, Jin Y, Tai J, Zhang J, Xiao X, Chu P, Yu Y, Wang SC, Lu J, Han S, Shi J, Guo Y, Ni X., MicroRNA-365a-3p promotes tumor growth and metastasis in laryngeal squamous cell carcinoma. Oncol Rep. 2016;35(4):2017-2026.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top