|
[1]G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister, et al., 3D-printed bioresorbable scaffold for periodontal repair, J Dent Res. 94 (2015) 153S–157S. [2]M. Nevins, M. Camelo, M.L. Nevins, R.K. Schenk, S.E. Lynch, Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone, J Periodontol. 74 (2003) 1282–1292. [3]F.M. Chen, Y. Jin, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities, Tissue Eng Part B Rev. 16 (2010) 219–255. [4]U. Wikesjö, R.G. Sorensen, A. Kinoshita, Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment, J Clin Periodontol. 31 (2004) 662–670. [5]A.-L. Gamblin, M.A. Brennan, A. Renaud, H. Yagita, F. Lézot, D. Heymann, et al., Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages, Biomaterials. 35 (2014) 9660–9667. [6]L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and Wnt signaling, Bone. 42 (2008) 606–615. [7]G. Yang, G. Yuan, X. Li, P. Liu, Z. Chen, M. Fan, BMP-2 induction of Dlx3 expression is mediated by p38/Smad5 signaling pathway in osteoblastic MC3T3-E1 cells, J Cell Physiol. 229 (2013) 943–954. [8]G. Xiao, D. Jiang, R. Gopalakrishnan, R.T. Franceschi, Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2, J Biol Chem. 277 (2002) 36181–36187. [9]H. Fu, M.N. Rahaman, R.F. Brown, D.E. Day, Evaluation of bone regeneration in implants composed of hollow HA microspheres loaded with transforming growth factor β1 in a rat calvarial defect model, Acta Biomater. 9 (2013) 5718–5727. [10]T. Zehnder, A.R. Boccaccini, R. Detsch, Biofabrication of a co-culture system in an osteoid-like hydrogel matrix, Biofabrication. 9 (2017) 025016. [11]Y. Ku, I.K. Shim, J.Y. Lee, Y.J. Park, S.-H. Rhee, S.H. Nam, et al., Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration, J Biomed Mater Res Part A. 90 (2009) 766–772. doi:10.1002/jbm.a.31846. [12]J.H. Shim, M.C. Yoon, C.M. Jeong, J. Jang, S.I. Jeong, D.W. Cho, et al., Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit, Biomed Mater. 9 (2014) 065006. [13]J. Li, F. Lv, H. Xu, Y. Zhang, J. Wang, Z. Yi, et al., A patterned nanocomposite membrane for high-efficiency healing of diabetic wound, J Mater Chem B. 5 (2017) 1926–1934. [14]O. Castaño, N. Sachot, E. Xuriguera, E. Engel, J.A. Planell, J.H. Park, et al., Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds, ACS Appl Mater Interfaces. 6 (2014) 7512–7522. [15]P. Pei, X. Qi, X. Du, M. Zhu, S. Zhao, Y. Zhu, Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration, J Mater Chem B. 4 (2016) 7452–7463. [16]N. Liu, S. Huang, Bin Yao, J. Xie, X. Wu, X. Fu, 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland, Sci Rep. 6 (2016) 186. [17]G. Orsini, J. Ricci, A. Scarano, G. Pecora, G. Petrone, G. Iezzi, et al., Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit, J Biomed Mater Res Part B Appl Biomater. 68 (2004) 199–208. [18]B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao, et al., Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth, Acta Biomater. 33 (2016) 311–321. [19]G. Daculsi, E. Goyenvalle, R. Cognet, E. Aguado, E. Suokas, Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model, Biomaterials. 32 (2011) 3166–3177. [20]H. Yuan, H. Fernandes, P. Habibovic, J. de Boer, A.M.C. Barradas, A. de Ruiter, et al., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc Natl Acad Sci USA. 107 (2010) 13614–13619. [21]J.H. Cho, Y.J. Jeon, S.M. Park, J.C. Shin, T.H. Lee, S. Jung, et al., Multifunctional effects of honokiol as an anti-inflammatory and anti-cancer drug in human oral squamous cancer cells and xenograft, Biomaterials. 53 (2015) 274–284. [22]W.F. Willems, M. Larsen, P.F. Friedrich, K.L. Shogren, A.T. Bishop, Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF, J Orthop Res. 30 (2012) 1556–1562. [23]C.H. Jang, S.H. Ahn, G.H. Yang, G.H. Kim, A MSCs-laden polycaprolactone/collagen scaffold for bone tissue regeneration, RSC Adv. 6 (2016) 6259–6265. [24]S. Tarafder, N.M. Davies, A. Bandyopadhyay, S. Bose, 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model, Biomater Sci. 1 (2013) 1250–1259. [25]K. Nawrotek, M. Tylman, K. Rudnicka, J. Balcerzak, K. Kamiński, Chitosan-based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration, Carbohyd Polym. 136 (2016) 764–771. [26]S. Liu, Y. Sun, Y. Fu, D. Chang, C. Fu, G. Wang, et al., Bioinspired collagen-apatite nanocomposites for bone regeneration, J Endod. 42 (2016) 1226–1232. [27]C.T. Kao, C.C. Lin, Y.W. Chen, C.H. Yeh, H.Y. Fang, M.Y. Shie, Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering, Mater Sci Eng C Mater Biol Appl. 56 (2015) 165–173. [28]Y.L. Cheng, Y.W. Chen, K. Wang, M.Y. Shie, Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography, J Mater Chem B. 4 (2016) 6307–6315. [29]C. Liu, H. Zhai, Z. Zhang, Y. Li, X. Xu, R. Tang, Cells recognize and prefer bone-like hydroxyapatite: Biochemical understanding of ultrathin mineral platelets in bone, ACS Appl Mater Interfaces. 8 (2016) 29997–30004. [30]A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials. 26 (2005) 5983–5990. doi:10.1016/j.biomaterials.2005.03.016. [31]A. Costa-Pinto, R. Reis, N. Neves, Scaffolds based bone tissue engineering: The role of chitosan, Tissue Eng Part B Rev. 17 (2011) 331–347. [32]Z. Shi, K.G. Neoh, E.T. Kang, W.C. Wang, Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles, Biomaterials. 27 (2006) 2440–2449. doi:10.1016/j.biomaterials.2005.11.036. [33]R. Justin, B. Chen, Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites, Carbohyd Polym. 103 (2014) 70–80. [34]R. Budiraharjo, K.G. Neoh, E.T. Kang, Enhancing bioactivity of chitosan film for osteogenesis and wound healing by covalent immobilization of BMP-2 or FGF-2, J Biomat Sci-Polym E. 24 (2013) 645–662. [35]A. Costa-Pinto, V. Correlo, P. Sol, M. Bhattacharya, S. Srouji, E. Livne, et al., Chitosan–poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model, J Tissue Eng Regen Med. 6 (2012) 21–28. [36]E. Krueger, A.N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, et al., Graphene foam as a three-dimensional platform for myotube growth, ACS Biomater Sci Eng. 2 (2016) 1234–1241. [37]X. Wu, S.J. Ding, K. Lin, J. Su, A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration, J Mater Chem B. 5 (2017) 3084–3102. [38]T. Cohen-Karni, R. Langer, D.S. Kohane, The smartest materials: The future of nanoelectronics in medicine, ACS Nano. 6 (2012) 6541–6545. [39]Y.L. Kong, M.K. Gupta, B.N. Johnson, M.C. McAlpine, 3D printed bionic nanodevices, Nano Today. 11 (2016) 330–350. [40]Y.L. Kong, I.A. Tamargo, H. Kim, B.N. Johnson, M.K. Gupta, T.-W. Koh, et al., 3D printed quantum dot light-emitting diodes, Nano Lett. 14 (2014) 7017–7023. [41]M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing, Adv Drug Deliv Rev. 63 (2011) 1352–1360. [42]X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, et al., 3D printable graphene composite, Sci Rep. 5 (2015) 11181. [43]F. Menaa, A. Abdelghani, B. Menaa, Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine, J Tissue Eng Regen Med. 9 (2014) 1321–1338. doi:10.1002/term.1910. [44]S.R. Ryoo, Y.K. Kim, M.H. Kim, D.H. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies, ACS Nano. 4 (2010) 6587–6598. doi:10.1021/nn1018279. [45]T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano. 5 (2011) 4670–4678. [46]S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering, J Control Release. 173 (2014) 75–88. doi:10.1016/j.jconrel.2013.10.017. [47]O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells, Carbon. 59 (2013) 200–211. [48]E. Sobol, O.L. Zakharkina, A. Baskov, A. Shekhter, I. Borschenko, A. Guller, et al., Laser engineering of spine discs, Laser Physics. 19 (2009) 825–835. [49]C.L. Kuo, C.T. Kao, H.Y. Fang, T.H. Huang, Y.W. Chen, M.Y. Shie, Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages, Laser Phys Lett. 12 (2015) 035681. [50]L. Abramovitch-Gottlib, T. Gross, D. Naveh, S. Geresh, S. Rosenwasks, I. Bar, et al., Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix, Lasers Med Sci. 20 (2005) 138–146. [51]M. Havel, C.S. Betz, A. Leunig, R. Sroka, Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application, Lasers Surg Med. 46 (2014) 449–455. [52]J. Cohen, J.D.B. Featherstone, C.Q. Le, D. Steinberg, O. Feuerstein, Effects of CO2 laser irradiation on tooth enamel coated with biofilm, Lasers Surg Med. 46 (2014) 216–223. [53]Y. Wu, J. Wang, D. Gong, H. Gu, S. Hu, H. Zhang, Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis, Lasers Med Sci. 27 (2012) 509–519. [54]Jiayu Lu, Chi Cheng, Yu-Shi He, Chengqi Lyu, Yufei Wang, Jia Yu, Ling Qiu, Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration
|