(3.238.7.202) 您好!臺灣時間:2021/03/04 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳侑庭
研究生(外文):Yu-Ting Wu
論文名稱:幾丁聚醣與石墨烯孔洞材合併二極體雷射對骨新生的應用
論文名稱(外文):The application of chitosan-graphene porous scaffolds combine diode laser for bone tissue engineering
指導教授:高嘉澤
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:牙醫學系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:37
中文關鍵詞:幾丁聚醣石墨烯二極體雷射骨新生
外文關鍵詞:chitosangraphenediode laserbone regeneration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牙周組織遭受細菌感染後,最初形成牙齦炎,若未治癒,將繼而形成牙周炎。牙周炎的特色為附連喪失及齒槽骨形成缺損。當骨形成缺損後,將造成牙齒的動搖度,因此促成骨新生是牙醫師希望能達成的目標。引導骨組織再生為促進牙周附連再生之手術,其中需使用再生膜以隔絕上皮細胞侵入,但由於再生膜無良好機械性質,因此常輔以骨粉作為支撐。如今市面上骨粉品牌眾多,各有優點,但卻各有缺點,如機械性質仍不甚優良或無法促進骨新生等。本研究之目的在於希望能做出一結合再生膜及骨粉性質的複合材料。幾丁聚醣為廣泛使用之生物材料,具有生物相容性、可降解性、易於修飾等等,因此作為本研究複合材之基底。另外石墨烯為近代新興材料,為當前世界上最薄最硬之材料,已應用於生醫領域。本實驗將幾丁聚醣與石墨烯結合作為一複合材,並且加入骨成形蛋白,經材料降解測試、BMP2釋放程度測試、生物相容性測試、骨新生程度測試後,發現本複合材料具有良好的降解性,間葉幹細胞可攀附生長,並可促進細胞之骨分化生長。於最後進入動物實驗。於動物實驗中,合併了二極體雷射,做低能量雷射治療,以期能促進骨的新生。動物實驗結果同樣顯示,幾丁聚醣與石墨烯孔洞複合材是一有良好生物相容性並可促進骨新生之材料。
其他文獻指出,石墨烯複合材可促進間葉幹細胞分化為造骨細胞,與本研究結果相呼應,經一連串結果顯示石墨烯複合材有相當優異之性質,期望未來能成為醫療上廣泛使用的骨缺損複合材。
When there is dental plaque accumulation around periodontium for a period of time, gingiva would be red and swelling, and this condition is called gingivitis. When gingiva inflammation gets worse, periodontitis is formed. The features of periodontitis are connective tissue attachment loss, bone loss, and teeth mobility. Thus the goal of bone regeneration is an important issue for dentists. The procedure of guided bone tissue regeneration is using barrier membrane to seal the bony defect area, preventing connective tissue cell to invade, and thus allow bone cell to grow. One of the disadvantages of barrier membrane is weak mechanical support. The goal of this study is to fabricate a scaffold which is strong enough to maintain space, and has the ability of promoting new bone generation. Chitosan is widely used in biomedical field, its features includes good biocompatibility, degradability, so we use chitosan as base of our composite scaffold. Graphene is the hardest and thinnest material, so we use chitosan and graphene to fabricate a scaffold, and add bone morphogenic protein 2 to induce osteogenesis. In the experiment, we analyze biodegradability, biocompalibility, BMP2 release, osteogenesis degree of the scaffold,
and we found this material has good degradability 、biocompatibility, and human mesenchymal stem cells could adhere and grow well. In the last, we did animal study to confirm the features of chitosan-graphene porous scaffold, and combined low level laser therapy to enhance osteogenesis. The results revealed that chitosan-graphene scaffold has good biocompatibility and is osteoinductive, we hope that it could widely used in guided bone regeneration in the future.
中文摘要...............................................................................2
英文摘要...............................................................................3

第一章文獻回顧及基礎理論
1.1骨缺損的形成.....................................................................4
1.2骨的形成............................................................................5
1.3引導組織再生.....................................................................6
1.4幾丁聚醣簡介.....................................................................8
1.5石墨烯簡介........................................................................10
1.6雷射簡介以及在牙科的應用................................................12
1.7二極體雷射簡介及應用.......................................................14
1.8低能量雷射簡介.................................................................15

第二章 實驗材料與方法
2.1含BMP2石墨烯製備...........................................................15
2.2幾丁聚醣支架製備.............................................................16
2.3材料降解分析....................................................................16
2.4 BMP2釋放程度分析..........................................................16
2.5生物相容性........................................................................17
2.6骨新生程度........................................................................17
2.7 動物實驗..........................................................................17
2.8電腦斷層照射....................................................................20
2.9統計方法...........................................................................21

第三章 結果
3.1材料降解性分析.................................................................22
3.2BMP2釋放程度分析...........................................................22
3.3生物相容性分析.................................................................23
3.4骨新生程度分析.................................................................23
3.5動物實驗...........................................................................24

第四章 討論............................................................................30

參考文獻................................................................................34
[1]G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister, et al., 3D-printed bioresorbable scaffold for periodontal repair, J Dent Res. 94 (2015) 153S–157S.
[2]M. Nevins, M. Camelo, M.L. Nevins, R.K. Schenk, S.E. Lynch, Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone, J Periodontol. 74 (2003) 1282–1292.
[3]F.M. Chen, Y. Jin, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities, Tissue Eng Part B Rev. 16 (2010) 219–255.
[4]U. Wikesjö, R.G. Sorensen, A. Kinoshita, Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) on regeneration of alveolar bone and periodontal attachment, J Clin Periodontol. 31 (2004) 662–670.
[5]A.-L. Gamblin, M.A. Brennan, A. Renaud, H. Yagita, F. Lézot, D. Heymann, et al., Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages, Biomaterials. 35 (2014) 9660–9667.
[6]L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and Wnt signaling, Bone. 42 (2008) 606–615.
[7]G. Yang, G. Yuan, X. Li, P. Liu, Z. Chen, M. Fan, BMP-2 induction of Dlx3 expression is mediated by p38/Smad5 signaling pathway in osteoblastic MC3T3-E1 cells, J Cell Physiol. 229 (2013) 943–954.
[8]G. Xiao, D. Jiang, R. Gopalakrishnan, R.T. Franceschi, Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2, J Biol Chem. 277 (2002) 36181–36187.
[9]H. Fu, M.N. Rahaman, R.F. Brown, D.E. Day, Evaluation of bone regeneration in implants composed of hollow HA microspheres loaded with transforming growth factor β1 in a rat calvarial defect model, Acta Biomater. 9 (2013) 5718–5727.
[10]T. Zehnder, A.R. Boccaccini, R. Detsch, Biofabrication of a co-culture system in an osteoid-like hydrogel matrix, Biofabrication. 9 (2017) 025016.
[11]Y. Ku, I.K. Shim, J.Y. Lee, Y.J. Park, S.-H. Rhee, S.H. Nam, et al., Chitosan/poly(L-lactic acid) multilayered membrane for guided tissue regeneration, J Biomed Mater Res Part A. 90 (2009) 766–772. doi:10.1002/jbm.a.31846.
[12]J.H. Shim, M.C. Yoon, C.M. Jeong, J. Jang, S.I. Jeong, D.W. Cho, et al., Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit, Biomed Mater. 9 (2014) 065006.
[13]J. Li, F. Lv, H. Xu, Y. Zhang, J. Wang, Z. Yi, et al., A patterned nanocomposite membrane for high-efficiency healing of diabetic wound, J Mater Chem B. 5 (2017) 1926–1934.
[14]O. Castaño, N. Sachot, E. Xuriguera, E. Engel, J.A. Planell, J.H. Park, et al., Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds, ACS Appl Mater Interfaces. 6 (2014) 7512–7522.
[15]P. Pei, X. Qi, X. Du, M. Zhu, S. Zhao, Y. Zhu, Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration, J Mater Chem B. 4 (2016) 7452–7463.
[16]N. Liu, S. Huang, Bin Yao, J. Xie, X. Wu, X. Fu, 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland, Sci Rep. 6 (2016) 186.
[17]G. Orsini, J. Ricci, A. Scarano, G. Pecora, G. Petrone, G. Iezzi, et al., Bone-defect healing with calcium-sulfate particles and cement: an experimental study in rabbit, J Biomed Mater Res Part B Appl Biomater. 68 (2004) 199–208.
[18]B. Chang, W. Song, T. Han, J. Yan, F. Li, L. Zhao, et al., Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth, Acta Biomater. 33 (2016) 311–321.
[19]G. Daculsi, E. Goyenvalle, R. Cognet, E. Aguado, E. Suokas, Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model, Biomaterials. 32 (2011) 3166–3177.
[20]H. Yuan, H. Fernandes, P. Habibovic, J. de Boer, A.M.C. Barradas, A. de Ruiter, et al., Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc Natl Acad Sci USA. 107 (2010) 13614–13619.
[21]J.H. Cho, Y.J. Jeon, S.M. Park, J.C. Shin, T.H. Lee, S. Jung, et al., Multifunctional effects of honokiol as an anti-inflammatory and anti-cancer drug in human oral squamous cancer cells and xenograft, Biomaterials. 53 (2015) 274–284.
[22]W.F. Willems, M. Larsen, P.F. Friedrich, K.L. Shogren, A.T. Bishop, Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF-2 and VEGF, J Orthop Res. 30 (2012) 1556–1562.
[23]C.H. Jang, S.H. Ahn, G.H. Yang, G.H. Kim, A MSCs-laden polycaprolactone/collagen scaffold for bone tissue regeneration, RSC Adv. 6 (2016) 6259–6265.
[24]S. Tarafder, N.M. Davies, A. Bandyopadhyay, S. Bose, 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model, Biomater Sci. 1 (2013) 1250–1259.
[25]K. Nawrotek, M. Tylman, K. Rudnicka, J. Balcerzak, K. Kamiński, Chitosan-based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration, Carbohyd Polym. 136 (2016) 764–771.
[26]S. Liu, Y. Sun, Y. Fu, D. Chang, C. Fu, G. Wang, et al., Bioinspired collagen-apatite nanocomposites for bone regeneration, J Endod. 42 (2016) 1226–1232.
[27]C.T. Kao, C.C. Lin, Y.W. Chen, C.H. Yeh, H.Y. Fang, M.Y. Shie, Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering, Mater Sci Eng C Mater Biol Appl. 56 (2015) 165–173.
[28]Y.L. Cheng, Y.W. Chen, K. Wang, M.Y. Shie, Enhanced adhesion and differentiation of human mesenchymal stem cell inside apatite-mineralized/poly(dopamine)-coated poly(ε-caprolactone) scaffolds by stereolithography, J Mater Chem B. 4 (2016) 6307–6315.
[29]C. Liu, H. Zhai, Z. Zhang, Y. Li, X. Xu, R. Tang, Cells recognize and prefer bone-like hydroxyapatite: Biochemical understanding of ultrathin mineral platelets in bone, ACS Appl Mater Interfaces. 8 (2016) 29997–30004.
[30]A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials. 26 (2005) 5983–5990. doi:10.1016/j.biomaterials.2005.03.016.
[31]A. Costa-Pinto, R. Reis, N. Neves, Scaffolds based bone tissue engineering: The role of chitosan, Tissue Eng Part B Rev. 17 (2011) 331–347.
[32]Z. Shi, K.G. Neoh, E.T. Kang, W.C. Wang, Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles, Biomaterials. 27 (2006) 2440–2449. doi:10.1016/j.biomaterials.2005.11.036.
[33]R. Justin, B. Chen, Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites, Carbohyd Polym. 103 (2014) 70–80.
[34]R. Budiraharjo, K.G. Neoh, E.T. Kang, Enhancing bioactivity of chitosan film for osteogenesis and wound healing by covalent immobilization of BMP-2 or FGF-2, J Biomat Sci-Polym E. 24 (2013) 645–662.
[35]A. Costa-Pinto, V. Correlo, P. Sol, M. Bhattacharya, S. Srouji, E. Livne, et al., Chitosan–poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model, J Tissue Eng Regen Med. 6 (2012) 21–28.
[36]E. Krueger, A.N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, et al., Graphene foam as a three-dimensional platform for myotube growth, ACS Biomater Sci Eng. 2 (2016) 1234–1241.
[37]X. Wu, S.J. Ding, K. Lin, J. Su, A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration, J Mater Chem B. 5 (2017) 3084–3102.
[38]T. Cohen-Karni, R. Langer, D.S. Kohane, The smartest materials: The future of nanoelectronics in medicine, ACS Nano. 6 (2012) 6541–6545.
[39]Y.L. Kong, M.K. Gupta, B.N. Johnson, M.C. McAlpine, 3D printed bionic nanodevices, Nano Today. 11 (2016) 330–350.
[40]Y.L. Kong, I.A. Tamargo, H. Kim, B.N. Johnson, M.K. Gupta, T.-W. Koh, et al., 3D printed quantum dot light-emitting diodes, Nano Lett. 14 (2014) 7017–7023.
[41]M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing, Adv Drug Deliv Rev. 63 (2011) 1352–1360.
[42]X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, et al., 3D printable graphene composite, Sci Rep. 5 (2015) 11181.
[43]F. Menaa, A. Abdelghani, B. Menaa, Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine, J Tissue Eng Regen Med. 9 (2014) 1321–1338. doi:10.1002/term.1910.
[44]S.R. Ryoo, Y.K. Kim, M.H. Kim, D.H. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies, ACS Nano. 4 (2010) 6587–6598. doi:10.1021/nn1018279.
[45]T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano. 5 (2011) 4670–4678.
[46]S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering, J Control Release. 173 (2014) 75–88. doi:10.1016/j.jconrel.2013.10.017.
[47]O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells, Carbon. 59 (2013) 200–211.
[48]E. Sobol, O.L. Zakharkina, A. Baskov, A. Shekhter, I. Borschenko, A. Guller, et al., Laser engineering of spine discs, Laser Physics. 19 (2009) 825–835.
[49]C.L. Kuo, C.T. Kao, H.Y. Fang, T.H. Huang, Y.W. Chen, M.Y. Shie, Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages, Laser Phys Lett. 12 (2015) 035681.
[50]L. Abramovitch-Gottlib, T. Gross, D. Naveh, S. Geresh, S. Rosenwasks, I. Bar, et al., Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix, Lasers Med Sci. 20 (2005) 138–146.
[51]M. Havel, C.S. Betz, A. Leunig, R. Sroka, Diode laser-induced tissue effects: in vitro tissue model study and in vivo evaluation of wound healing following non-contact application, Lasers Surg Med. 46 (2014) 449–455.
[52]J. Cohen, J.D.B. Featherstone, C.Q. Le, D. Steinberg, O. Feuerstein, Effects of CO2 laser irradiation on tooth enamel coated with biofilm, Lasers Surg Med. 46 (2014) 216–223.
[53]Y. Wu, J. Wang, D. Gong, H. Gu, S. Hu, H. Zhang, Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis, Lasers Med Sci. 27 (2012) 509–519.
[54]Jiayu Lu, Chi Cheng, Yu-Shi He, Chengqi Lyu, Yufei Wang, Jia Yu, Ling Qiu, Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔