跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王冠懿
研究生(外文):Kuan-Yi Wang
論文名稱:柚皮素抑制神經膠質母細胞瘤細胞侵襲及轉移的分子機轉
論文名稱(外文):mechanism of naringenin inhibited migration and invasion of glioblastoma cells
指導教授:許立松
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化微生物免疫研究所
學門:生命科學學門
學類:其他生命科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:柚皮素
外文關鍵詞:naringenin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膠質細胞瘤屬於腦瘤中病程惡化速度最快且癒後差的類型之一。其中的膠質母細胞瘤是最常見且致死率最高的。在台灣,腦部惡性腫瘤盛行率約每10萬人有5人。據統計,台灣每年新增近600例原發性惡性腦瘤,膠質母細胞瘤佔近40%,發現時多已晚期且存活率低,難以治癒。從天然柑橘類水果中分離得到的類黃酮已被證明可以抑制乳腺癌,結腸癌,胃癌和前列腺癌細胞的生長。然而,尚未有研究探討其是否影響人類膠質母細胞瘤細胞的侵襲和遷移。在本實驗中,我們發現利用不同濃度的柚皮素處理神經膠質母細胞瘤細胞株8901或是8401細胞,能夠抑制癌細胞的侵襲和遷移的作用。此外,藉由酵素活性測試和西方墨點法結果分析,柚皮素隨著濃度增加隨之抑制基質金屬蛋白酶 (MMP-2、MMP-9) 活性以及蛋白表現量。 Naringenin藉由調控 snail 及 slug 路徑誘發上皮間質轉換 (EMT) 。此外,在柚皮素作用下磷酸化 p38及Erk的表現下降。總之,實驗結果可知,柚皮素能夠通過下調MAPK訊號路徑來抑制膠質母細胞瘤細胞遷移。
Gliomas are one of the most malignant and treatment-resistant types of human brain cancer. Glioblastoma, the most common type of glioma, is associated with very poor survival. In Taiwan, the prevalence of brain cancer is about 10 per 100,000 people. In Taiwan, the annual increase of nearly 600 cases of primary malignant brain tumor and glioblastoma accounted for around 40% with more advanced and low survival rate. Naringenin, a flavanone isolated from natural citrus fruits, has been shown to inhibit the growth of breast, colon, gastric and prostate cancer cells. However, there are no reports describing its effects on the invasion and migration of human glioblastoma cell lines. In this report, we found that the treatment of glioblastoma cell 8901 and 8401 lines with different concentrations of naringenin inhibited the invasion and migration of these cells. Furthermore, zymography and Western blot analysis revealed that naringenin downregulated the levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) expression in a concentration-dependent manner.Naringenin reversed epithelial–mesenchymal transition (EMT) as shown by decreased expression of snail/slug. Moreover, naringenin also decreased the phosphorylation p38, Erk(extracellular signal–regulated kinases). In conclusion, our study shows that naringenin is capable of inhibiting glioblastoma cancer cell migration and invasion through multiple mechanisms including downregulation of MMP-2 and MMP-9 activities, decreased MAPK signaling pathway and reverse of EMT phenomenon.
壹、中文摘要 i
貳、英文摘要 ii
參、縮寫表 iii
肆、緒論 1
一、 腦癌 1
二、 膠質母細胞瘤(GBM) 2
三、 癌症的侵襲與轉移 4
四、 基質金屬蛋白酶 5
五、 上皮細胞間質轉化機制 7
六、 柚皮素 8
七、 柚皮素與癌症關係 9
伍、實驗動機 12
陸、實驗材料與設備 13
一、 藥品試劑 13
二、 儀器設備 16
柒、實驗方法 18
一、 細胞培養 18
二、 細胞存活率分析 (MTT assay) 20
三、 水解蛋白酵素分析 (Zymography) 21
四、 細胞移動性分析 (migration assay) 22
五、 細胞侵襲性分析 23
六、 細胞蛋白質製備 23
七、 西方墨點法 25
捌、實驗結果 28
一、 柚皮素對 GBM 存活率的影響 28
二、 柚皮素對 GBM 細胞週期的影響 28
三、 柚皮素對 GBM 侵襲和移動能力之分析 29
四、 柚皮素對 MMP-2 及 MMP-9 的活性影響 31
五、 柚皮素對 Erk1/2、p38 訊號傳遞路徑之影響 31
六、 柚皮素對 EMT轉錄因子的影響 32
玖、討論 33
壹拾、參考文獻 36
壹拾壹、圖表與圖表說明 42
1. Seifert M, Garbe M, Friedrich B, Mittelbronn M, Klink B Comparative transcriptomics reveals similarities and differences between astrocytoma grades: BMC Cancer. 2015;15:952. doi:10.1186/s12885-015-1939-9.
2. Bleeker FE, Molenaar RJ, Leenstra S Recent advances in the molecular understanding of glioblastoma: J Neurooncol. 2012 May;108(1):11-27. Epub 2012 Jan 20 doi:10.1007/s11060-011-0793-0.
3. Zheng T, Cantor KP, Zhang Y, Chiu BC, Lynch CF (2001) Risk of brain glioma not associated with cigarette smoking or use of other tobacco products in Iowa. Cancer Epidemiol Biomarkers Prev 10: 413-414.
4. Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, et al. (2011) Alcohol consumption and risk of glioblastoma; evidence from the Melbourne Collaborative Cohort Study. Int J Cancer 128: 1929-1934.
5. Young RM, Jamshidi A, Davis G, Sherman JH Current trends in the surgical management and treatment of adult glioblastoma: Ann Transl Med. 2015 Jun;3(9):121. doi:10.3978/j.issn.2305-5839.2015.05.10.
6. Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, et al. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience: J Neurooncol. 2007 May;83(1):61-70. Epub 2006 Dec 14 doi:10.1007/s11060-006-9303-1.
7. Gallego O Nonsurgical treatment of recurrent glioblastoma: Curr Oncol. 2015 Aug;22(4):e273-81. doi:10.3747/co.22.2436.
8. Khosla D Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma: Ann Transl Med. 2016 Feb;4(3):54. doi:10.3978/j.issn.2305-5839.2016.01.25.
9. Hart MG, Garside R, Rogers G, Stein K, Grant R (2013) Temozolomide for high-grade glioma. Cochrane Database Syst Rev 30.
10. Nghiemphu PL, Wen PY, Lamborn KR, Drappatz J, Robins HI, et al. A phase I trial of tipifarnib with radiation therapy, with and without temozolomide, for patients with newly diagnosed glioblastoma: Int J Radiat Oncol Biol Phys. 2011 Dec 1;81(5):1422-7. Epub 2010 Oct 8 doi:10.1016/j.ijrobp.2010.07.1997.
11. Villà S, Balañà C, Comas S Radiation and concomitant chemotherapy for patients with glioblastoma multiforme: Chin J Cancer. 2014 Jan;33(1):25-31. doi:10.5732/cjc.013.10216.
12. Moviglia GA, Carrizo AG, Varela G, Gaeta CA, Paes de Lima A, et al. (2008) Preliminary report on tumor stem cell/B cell hybridoma vaccine for recurrent glioblastoma multiforme. Hematol Oncol Stem Cell Ther 1: 3-13.
13. Nabeshima K, Inoue T, Shimao Y, Sameshima T (2002) Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52: 255-264.
14. Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38: 2651-2660.
15. De La Puerta R, Martinez E, Bravo L, Ahumada MC (1996) Effect of silymarin on different acute inflammation models and on leukocyte migration. J Pharm Pharmacol 48: 968-970.
16. Bhatia N, Agarwal C, Agarwal R (2001) Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells. Nutr Cancer 39: 292-299.
17. Singh RP, Agarwal R (2002) Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal 4: 655-663.
18. Santibanez JF, Guerrero J, Quintanilla M, Fabra A, Martinez J (2002) Transforming growth factor-beta1 modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes. Biochem Biophys Res Commun 296: 267-273.
19. Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3: 422-433.
20. Liotta LA (1986) Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res 46: 1-7.
21. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189: 300-308.
22. Zucker S, Vacirca J (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23: 101-117.
23. Van Wart HE, Birkedal-Hansen H The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family: Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578-82.
24. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3'' kinase/AKT pathways. Oncogene 24: 7443-7454.
25. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: 973-981.
26. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118: 277-279.
27. Thiery JP (2002) Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2: 442-454.
28. Choudhury R, Chowrimootoo G, Srai K, Debnam E, Rice-Evans CA (1999) Interactions of the flavonoid naringenin in the gastrointestinal tract and the influence of glycosylation. Biochem Biophys Res Commun 265: 410-415.
29. Felgines C, Texier O, Morand C, Manach C, Scalbert A, et al. (2000) Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 279: G1148-1154.
30. Zhang Y, Liu B, Chen X, Zhang N, Li G, et al. (2017) Naringenin ameliorates behavioral dysfunction and neurological deficits in a D-galactose induced aging mouse model through activation of PI3K/Akt/Nrf2 pathway. Rejuvenation Res 16.
31. Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS (2017) Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-An in vitro and in vivo approach. Carbohydr Polym 170: 124-132.
32. Testai L, Calderone V (2017) Nutraceutical Value of Citrus Flavanones and Their Implications in Cardiovascular Disease. Nutrients 9.
33. Borradaile NM, de Dreu LE, Barrett PH, Huff MW (2002) Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res 43: 1544-1554.
34. Saleh TM, Saleh MC, Connell BJ, Song YH (2017) A co-drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin Exp Pharmacol Physiol 21: 1440-1681.
35. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, et al. (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90: 1238-1244.
36. Cheng IF, Breen K (2000) On the ability of four flavonoids, baicilein, luteolin, naringenin, and quercetin, to suppress the Fenton reaction of the iron-ATP complex. Biometals 13: 77-83.
37. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 45673: 45673.
38. Liang J, Halipu Y, Hu F, Yakeya B, Chen W, et al. (2017) Naringenin protects keratinocytes from oxidative stress injury via inhibition of the NOD2-mediated NF-kappaB pathway in pemphigus vulgaris. Biomed Pharmacother 92: 796-801.
39. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26: 167-181.
40. Zhang F, Dong W, Zeng W, Zhang L, Zhang C, et al. (2016) Naringenin prevents TGF-beta1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res 18: 016-0698.
41. Chang HL, Chang YM, Lai SC, Chen KM, Wang KC, et al. (2017) Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and -9. Exp Ther Med 13: 739-744.
42. Lou C, Zhang F, Yang M, Zhao J, Zeng W, et al. Naringenin Decreases Invasiveness and Metastasis by Inhibiting TGF-β-Induced Epithelial to Mesenchymal Transition in Pancreatic Cancer Cells: PLoS One. 2012;7(12):e50956. doi:10.1371/journal.pone.0050956.
43. Park HJ, Choi YJ, Lee JH, Nam MJ (2017) Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem Toxicol 99: 1-8.
44. Totta P, Acconcia F, Leone S, Cardillo I, Marino M (2004) Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor alpha and beta signalling. IUBMB Life 56: 491-499.
45. Huang Y, Hwang J, Lee P, Ke F, Huang J, et al. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor: Br J Pharmacol. 1999 Nov;128(5):999-1010. doi:10.1038/sj.bjp.0702879.
46. Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, et al. (2011) Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 55: 300-309.
47. Lim W, Park S, Bazer FW, Song G (2017) Naringenin-Induced Apoptotic Cell Death in Prostate Cancer Cells Is Mediated via the PI3K/AKT and MAPK Signaling Pathways. J Cell Biochem 118: 1118-1131.
48. Das R, Philip S, Mahabeleshwar GH, Bulbule A, Kundu GC (2005) Osteopontin: it''s role in regulation of cell motility and nuclear factor kappa B-mediated urokinase type plasminogen activator expression. IUBMB Life 57: 441-447.
49. Felx M, Guyot MC, Isler M, Turcotte RE, Doyon J, et al. (2006) Endothelin-1 (ET-1) promotes MMP-2 and MMP-9 induction involving the transcription factor NF-kappaB in human osteosarcoma. Clin Sci 110: 645-654.
50. Sliva D, Rizzo MT, English D (2002) Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by the secretion of urokinase-type plasminogen activator. J Biol Chem 277: 3150-3157.
51. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275: 665-668.
52. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, et al. (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84-89.
53. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, et al. (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76-83.
54. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, et al. (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499-511.
55. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613-1618.
56. Lentini A, Forni C, Provenzano B, Beninati S (2007) Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperetin correlate to the reduction of the in vivo metastatic potential. Amino Acids 32: 95-100.
57. Frydoonfar HR, McGrath DR, Spigelman AD (2003) The variable effect on proliferation of a colon cancer cell line by the citrus fruit flavonoid Naringenin. Colorectal Dis 5: 149-152.
58. Zhao Y, Fan D, Ru B, Cheng KW, Hu S, et al. (2016) 6-C-(E-phenylmethyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer 68: 38-50.
59. Da Pozzo E, Costa B, Cavallini C, Testai L, Martelli A, et al. (2017) The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. Oxid Med Cell Longev 9536148: 12.
60. Chou YC, Chang MY, Wang MJ, Yu FS, Liu HC, et al. (2015) PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2, -7 and -9 gene expression. Oncol Rep 34: 2489-2496.
61. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271: 31929-31936.
62. Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38: 200-211.
63. Hsiao YC, Kuo WH, Chen PN, Chang HR, Lin TH, et al. (2007) Flavanone and 2''-OH flavanone inhibit metastasis of lung cancer cells via down-regulation of proteinases activities and MAPK pathway. Chem Biol Interact 167: 193-206.
64. Shannon S, Jia D, Entersz I, Beelen P, Yu M, et al. (2017) Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer 17: 017-3107.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top