(3.235.108.188) 您好!臺灣時間:2021/03/03 20:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林雅萩
研究生(外文):Ya-Chiu Lin
論文名稱:褪黑激素抑制人類骨肉瘤細胞轉移和侵襲之機制探討
論文名稱(外文):Study of the inhibitory effects and molecular mechanisms of melatonin on the metastasis and invasion of human osteosarcoma cells
指導教授:楊順發謝逸憲
指導教授(外文):Shun-Fa YangYi-Hsien Hsieh
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生化微生物免疫研究所
學門:生命科學學門
學類:其他生命科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:褪黑激素骨肉瘤轉移侵襲
外文關鍵詞:melatoninosteosarcomametastasisinvasion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨肉瘤是最常見的原發性惡性骨腫瘤且惡性程度最高,好發於兒童及青少年,而骨肉瘤的肺轉移通常是導致患者死亡的主因。chemokine (C-C motif) ligand 24 (CCL24) 為CC chemokine家族的一員,主要在發炎反應下作用,調控白血球的活動,與癌症的轉移跟侵襲以及血管新生的調控有關。褪黑激素 (Melatonin) 主要是腦部松果體 (Pineal gland) 所分泌的一種激素,具有調節生理時鐘的作用此外研究證實,褪黑激素具有抗氧化、抗發炎以及抗癌的功效,但褪黑激素對於骨肉瘤療效尚未被釐清。因此,本研究中主要探討褪黑激素是否會對骨肉瘤細胞的生長與轉移造成影響。首先以細胞毒性實驗觀察到褪黑激素在骨肉瘤細胞株(U2OS和HOS)中並無細胞毒性。接著以Wound healing Assay和boyden chamber Assay發現褪黑激素確實能抑制骨肉瘤細胞的爬行和侵襲能力。用gelatin zymography方式發現褪黑激素並不會影響MMP-9及MMP-2蛋白的活性。因此利用 RNA-Sequencing (RNA-seq) 找出褪黑激素可能影響轉移之相關基因CCL24,接著以Reverse transcription-polymerase chain reaction (RT-PCR)、real-time PCR、enzyme-linked immunosorbent assay (ELISA) 發現褪黑激素能有效抑制CCL24 mRNA及其分泌量。利用Western blot發現人類骨肉瘤細胞U2OS在處理褪黑激素後,是透過抑制磷酸化JNK1/2蛋白表現來抑制細胞的轉移。總結以上結果,我們發現在骨肉瘤細胞中,褪黑激素能抑制訊息傳遞路徑中的JNK1/2訊息傳遞路徑來降低CCL24的分泌,來達到抑制骨肉瘤細胞轉移和侵襲的能力。因此,褪黑激素可能可以用來預防骨肉瘤的轉移,並期望能應用在未來癌症的治療上。
Osteosarcoma is the most malignant and common primary bone tumor, occurring in developing children and adolescents. Lung metastasis of osteosarcoma is usually the leading cause of death in patients. Chemokine (C-C motif) ligand 24 (CCL24), a member of the CC chemokine family, a proinflammatory cytokine, usually act to induce the migration and activation of leukocytes in immune responses. Regulate cancer progression, especially the processes of invasion, metastasis and angiogenesis. Melatonin is a naturally occurring molecule mainly secreted by the pineal gland and known as a gatekeeper of circadian clocks. Many reports demonstrate that melatonin had an antioxidant, antiinflammatory and anti-cancer effect. However, the therapeutic potential of melatonin on osteosarcoma remains unclear. Therefore, we aimed to determine whether melatonin affects the growth and migration of osteosarcoma cells. In this study, we used osteosarcoma cell lines (U2OS and HOS) to conduct experiments and determine that the melatonin on cell viability. We also found the inhibitory of the migration and invasion ability of osteosarcoma cells by wound healing assay and boyden chamber assay. According to a gelatin zymography assay, increasing in the concentration of melatonin, didn’t affect protein levels of MMP-9 and MMP-2. Moreover, RNA sequencing (RNA-seq) found that CCL24 gene may affect metastasis. According to a reverse-transcription polymerase chain reaction (PCR), real-time PCR, ELISA to verify, revealed that melatonin inhibited CCL24 mRNA and CCL24 secretion. Furthermore, the effect of melatonin on the MAPK pathway and PI3K/AKT signallings were examined to show melatonin reduce the protein levels of JNK1/2, inhibits osteosarcoma cell metastasis. Based on these findings, we concluded that melatonin inhibited the activity of JNK1/2 protein levels and CCL24 secretion, lead to reduce the metastasis of osteosarcoma. In conclusion, melatonin may be a powerful candidate for a preventive agent against osteosarcoma invasion and metastasis.
摘要.................................................I
Abstract............................................II
縮寫表..............................................IV

第一章 緒論..........................................1
1. 骨癌.........................................1
2. 褪黑激素的介紹...............................6
3. 趨化激素的介紹...............................8
4. 腫瘤的轉移和侵襲............................10
5. 基質金屬蛋白水解酶..........................11
6. 訊息傳遞路徑................................12
7. 研究動機....................................14

第二章 實驗方法.....................................15
1. 實驗材料與配製..............................17
2. 細胞培養....................................24
3. 細胞存活率分析..............................26
4. 體外腫瘤轉移試驗............................26
5. 受質十二烷基硫酸鈉聚丙烯醯胺凝膠電泳........29
6. 西方點墨法..................................30
7. 反轉錄-聚合酶連鎖反應.......................31
8. RNA干擾實驗.................................33
9. 酵素連結免疫吸附法 (Enzyme linked-immunosorbent assay;ELISA) ......................................34
10. RNA定序 (RNA-sequencing) ...................35
11. 統計分析....................................35

第三章 結果.........................................36
1. 褪黑激素對於人類骨肉瘤細胞株 U2OS、HOS 之細胞存活率的影響..............................................36
2. 褪黑激素對於人類骨肉瘤細胞株 U2OS、HOS 之細胞移動能力影響..............................................36
3. 褪黑激素對於人類骨肉瘤細胞株 U2OS 及 HOS 爬行能力之影響................................................36
4. 褪黑激素對於人類骨肉瘤細胞株 U2OS 及 HOS 侵襲能力之影響................................................37
5. 褪黑激素對於人類骨肉瘤細胞株 U2OS 及 HOS 分泌 MMP-2 及 MMP-9 酵素活性之影響.............................37
6. 利用 RNA-Sequencing 來觀察褪黑激素對於人類骨肉瘤細胞株 U2OS mRNA表現量之影響............................37
7. 褪黑激素對於人類骨肉瘤細胞株 U2OS 其 CCL24 mRNA 表現量之影響............................................38
8. 褪黑激素對於人類骨肉瘤細胞株 U2OS 其 CCL24 於不同時間表現量之影響......................................38
9. 利用 CCL24 合成蛋白來觀察骨肉瘤細胞株 U2OS 及 HOS 轉移能力之影響........................................39
10. CCL24 對於人類骨肉瘤細胞株 U2OS 及 HOS 轉移及侵襲能力之影響............................................39
11. 褪黑激素對於人類骨肉瘤細胞株 U2OS 其 CCL24蛋白表現量之影響..............................................40
12. 褪黑激素對於人類骨肉瘤細胞株 U2OS 及 HOS 其訊息傳遞路徑之影響..........................................40


第四章 討論.........................................42

參考文獻............................................47
圖表與圖表說明......................................58
1.Biermann, J.S., et al., Bone cancer. J Natl Compr Canc Netw, 2010. 8(6): p. 688-712.
2.Kager, L., U. Potschger, and S. Bielack, Review of mifamurtide in the treatment of patients with osteosarcoma. Ther Clin Risk Manag, 2010. 6: p. 279-86.
3.Harris, M.B., et al., Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol, 1998. 16(11): p. 3641-8.
4.Janeway, K.A. and C.R. Walkley, Modeling human osteosarcoma in the mouse: From bedside to bench. Bone, 2010. 47(5): p. 859-65.
5.Niinaka, Y., et al., Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res, 2010. 70(22): p. 9483-93.
6.Cheng, Y.Y., et al., Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer, 2004. 42(5): p. 410-5.
7.Kager, L., et al., Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol, 2003. 21(10): p. 2011-8.
8.Weidle, U.H., et al., Molecular Mechanisms of Bone Metastasis. Cancer Genomics Proteomics, 2016. 13(1): p. 1-12.
9.Clark, J.C., C.R. Dass, and P.F. Choong, Current and future treatments of bone metastases. Expert Opin Emerg Drugs, 2008. 13(4): p. 609-27.
10.Mercadante, S., Malignant bone pain: pathophysiology and treatment. Pain, 1997. 69(1-2): p. 1-18.
11.Mundy, G.R., Mechanisms of bone metastasis. Cancer, 1997. 80(8 Suppl): p. 1546-56.
12.Rades, D., S.E. Schild, and J.L. Abrahm, Treatment of painful bone metastases. Nat Rev Clin Oncol, 2010. 7(4): p. 220-9.
13.Gilbert, R.W., J.H. Kim, and J.B. Posner, Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol, 1978. 3(1): p. 40-51.
14.Hill, M.E., et al., Spinal cord compression in breast cancer: a review of 70 cases. Br J Cancer, 1993. 68(5): p. 969-73.
15.Rubens, R.D., Bone metastases--the clinical problem. Eur J Cancer, 1998. 34(2): p. 210-3.
16.Riccio, A.I., F.M. Wodajo, and M. Malawer, Metastatic carcinoma of the long bones. Am Fam Physician, 2007. 76(10): p. 1489-94.
17.Broos, P., et al., Surgical treatment of metastatic fracture of the femur improvement of quality of life. Acta Orthop Belg, 1993. 59 Suppl 1: p. 52-6.
18.Brage, M.E. and M.A. Simon, Evaluation, prognosis, and medical treatment considerations of metastatic bone tumors. Orthopedics, 1992. 15(5): p. 589-96.
19.Zawilska, J.B., D.J. Skene, and J. Arendt, Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep, 2009. 61(3): p. 383-410.
20.Dubocovich, M.L. and M. Markowska, Functional MT1 and MT2 melatonin receptors in mammals. Endocrine, 2005. 27(2): p. 101-10.
21.Dubocovich, M.L., et al., International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev, 2010. 62(3): p. 343-80.
22.Su, S.C., et al., Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res, 2017. 62(1).
23.Herxheimer, A. and K.J. Petrie, Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev, 2002(2): p. Cd001520.
24.Giannoulia-Karantana, A., et al., Melatonin and immunomodulation: connections and potential clinical applications. Neuroimmunomodulation, 2006. 13(3): p. 133-44.
25.Tan, D.X., et al., One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res, 2007. 42(1): p. 28-42.
26.Jardim-Perassi, B.V., et al., Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One, 2014. 9(1): p. e85311.
27.Borin, T.F., et al., Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res, 2016. 60(1): p. 3-15.
28.Yeh, C.M., et al., Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget, 2016. 7(16): p. 21952-67.
29.Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett, 2007. 256(2): p. 137-65.
30.Moser, B., et al., Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004. 25(2): p. 75-84.
31.Zlotnik, A. and O. Yoshie, The chemokine superfamily revisited. Immunity, 2012. 36(5): p. 705-16.
32.Cheadle, E.J., et al., Eotaxin-2 and colorectal cancer: a potential target for immune therapy. Clin Cancer Res, 2007. 13(19): p. 5719-28.
33.Jin, L., et al., CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget, 2017. 8(3): p. 5135-5148.
34.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
35.Yang, S.F., et al., Antimetastatic effects of Terminalia catappa L. on oral cancer via a down-regulation of metastasis-associated proteases. Food Chem Toxicol, 2010. 48(4): p. 1052-8.
36.Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. J Cell Sci, 2010. 123(Pt 24): p. 4195-200.
37.Nabeshima, K., et al., Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 2002. 52(4): p. 255-64.
38.Hoon, D.S., et al., Molecular mechanisms of metastasis. J Surg Oncol, 2011. 103(6): p. 508-17.
39.Zhan, M., H. Zhao, and Z.C. Han, Signalling mechanisms of anoikis. Histol Histopathol, 2004. 19(3): p. 973-83.
40.Al-Mehdi, A.B., et al., Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med, 2000. 6(1): p. 100-2.
41.Mannori, G., et al., Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol, 1997. 151(1): p. 233-43.
42.Quan, T., et al., Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc, 2009. 14(1): p. 20-4.
43.Kim, J., et al., Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J Ethnopharmacol, 2011. 137(1): p. 427-33.
44.Ham, S.A., et al., Peroxisome proliferator-activated receptor delta modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation. J Dermatol Sci, 2014. 76(1): p. 44-50.
45.Hwang, Y.P., et al., Cultivated ginseng suppresses ultraviolet B-induced collagenase activation via mitogen-activated protein kinases and nuclear factor kappaB/activator protein-1-dependent signaling in human dermal fibroblasts. Nutr Res, 2012. 32(6): p. 428-38.
46.Jung, S.K., et al., Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem Pharmacol, 2010. 79(10): p. 1455-61.
47.Sbardella, D., et al., Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med, 2012. 33(2): p. 119-208.
48.Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol, 2007. 8(3): p. 221-33.
49.Kim, S., et al., Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 2009. 16(6-7): p. 573-80.
50.Chou, C.H., et al., MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis. Oncogene, 2012. 31(4): p. 458-68.
51.Lee, J.Y., et al., Gene Expression Profiling of Breast Cancer Brain Metastasis. Sci Rep, 2016. 6: p. 28623.
52.Liu, B., et al., Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells. Mol Med Rep, 2016.
53.Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90.
54.Schaeffer, H.J. and M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 1999. 19(4): p. 2435-44.
55.Chen, Z., et al., MAP kinases. Chem Rev, 2001. 101(8): p. 2449-76.
56.Yoon, S. and R. Seger, The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 2006. 24(1): p. 21-44.
57.Gille, H., A.D. Sharrocks, and P.E. Shaw, Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature, 1992. 358(6385): p. 414-7.
58.Milne, D.M., et al., Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem, 1994. 269(12): p. 9253-60.
59.Yang, B.S., et al., Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol, 1996. 16(2): p. 538-47.
60.Murphy, L.O., et al., Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol, 2002. 4(8): p. 556-64.
61.Morton, S., et al., A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. Embo j, 2003. 22(15): p. 3876-86.
62.Weston, C.R. and R.J. Davis, The JNK signal transduction pathway. Curr Opin Genet Dev, 2002. 12(1): p. 14-21.
63.Adler, V., C.C. Franklin, and A.S. Kraft, Phorbol esters stimulate the phosphorylation of c-Jun but not v-Jun: regulation by the N-terminal delta domain. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5341-5.
64.Ip, Y.T. and R.J. Davis, Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol, 1998. 10(2): p. 205-19.
65.Smeal, T., et al., Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature, 1991. 354(6353): p. 494-6.
66.Kennedy, N.J. and R.J. Davis, Role of JNK in tumor development. Cell Cycle, 2003. 2(3): p. 199-201.
67.Zarubin, T. and J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell Res, 2005. 15(1): p. 11-8.
68.Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001. 81(2): p. 807-69.
69.Kumar, S., J. Boehm, and J.C. Lee, p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov, 2003. 2(9): p. 717-26.
70.Chen, X.F., et al., Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Mol Biol Rep, 2012. 39(4): p. 3549-56.
71.Liu, K.C., et al., Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep, 2011. 26(1): p. 177-84.
72.Hsieh, Y.S., et al., Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 2007. 28(5): p. 977-87.
73.Sato, H., et al., A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 1994. 370(6484): p. 61-5.
74.Stamenkovic, I., Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol, 2000. 10(6): p. 415-33.
75.Cutando, A., et al., Role of melatonin in cancer treatment. Anticancer Res, 2012. 32(7): p. 2747-53.
76.Yoon, S.O., et al., Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003. 36(1): p. 128-37.
77.Li, H., et al., Chemokine CCL24 promotes the growth and invasiveness of trophoblasts through ERK1/2 and PI3K signaling pathways in human early pregnancy. Reproduction, 2015. 150(5): p. 417-27.
78.Li, H., et al., Trophoblasts-derived chemokine CCL24 promotes the proliferation, growth and apoptosis of decidual stromal cells in human early pregnancy. Int J Clin Exp Pathol, 2013. 6(6): p. 1028-37.
79.Ho, H.Y., et al., Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res, 2016. 61(4): p. 479-492.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔