|
1.Biermann, J.S., et al., Bone cancer. J Natl Compr Canc Netw, 2010. 8(6): p. 688-712. 2.Kager, L., U. Potschger, and S. Bielack, Review of mifamurtide in the treatment of patients with osteosarcoma. Ther Clin Risk Manag, 2010. 6: p. 279-86. 3.Harris, M.B., et al., Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol, 1998. 16(11): p. 3641-8. 4.Janeway, K.A. and C.R. Walkley, Modeling human osteosarcoma in the mouse: From bedside to bench. Bone, 2010. 47(5): p. 859-65. 5.Niinaka, Y., et al., Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis. Cancer Res, 2010. 70(22): p. 9483-93. 6.Cheng, Y.Y., et al., Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer, 2004. 42(5): p. 410-5. 7.Kager, L., et al., Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol, 2003. 21(10): p. 2011-8. 8.Weidle, U.H., et al., Molecular Mechanisms of Bone Metastasis. Cancer Genomics Proteomics, 2016. 13(1): p. 1-12. 9.Clark, J.C., C.R. Dass, and P.F. Choong, Current and future treatments of bone metastases. Expert Opin Emerg Drugs, 2008. 13(4): p. 609-27. 10.Mercadante, S., Malignant bone pain: pathophysiology and treatment. Pain, 1997. 69(1-2): p. 1-18. 11.Mundy, G.R., Mechanisms of bone metastasis. Cancer, 1997. 80(8 Suppl): p. 1546-56. 12.Rades, D., S.E. Schild, and J.L. Abrahm, Treatment of painful bone metastases. Nat Rev Clin Oncol, 2010. 7(4): p. 220-9. 13.Gilbert, R.W., J.H. Kim, and J.B. Posner, Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol, 1978. 3(1): p. 40-51. 14.Hill, M.E., et al., Spinal cord compression in breast cancer: a review of 70 cases. Br J Cancer, 1993. 68(5): p. 969-73. 15.Rubens, R.D., Bone metastases--the clinical problem. Eur J Cancer, 1998. 34(2): p. 210-3. 16.Riccio, A.I., F.M. Wodajo, and M. Malawer, Metastatic carcinoma of the long bones. Am Fam Physician, 2007. 76(10): p. 1489-94. 17.Broos, P., et al., Surgical treatment of metastatic fracture of the femur improvement of quality of life. Acta Orthop Belg, 1993. 59 Suppl 1: p. 52-6. 18.Brage, M.E. and M.A. Simon, Evaluation, prognosis, and medical treatment considerations of metastatic bone tumors. Orthopedics, 1992. 15(5): p. 589-96. 19.Zawilska, J.B., D.J. Skene, and J. Arendt, Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep, 2009. 61(3): p. 383-410. 20.Dubocovich, M.L. and M. Markowska, Functional MT1 and MT2 melatonin receptors in mammals. Endocrine, 2005. 27(2): p. 101-10. 21.Dubocovich, M.L., et al., International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev, 2010. 62(3): p. 343-80. 22.Su, S.C., et al., Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res, 2017. 62(1). 23.Herxheimer, A. and K.J. Petrie, Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev, 2002(2): p. Cd001520. 24.Giannoulia-Karantana, A., et al., Melatonin and immunomodulation: connections and potential clinical applications. Neuroimmunomodulation, 2006. 13(3): p. 133-44. 25.Tan, D.X., et al., One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res, 2007. 42(1): p. 28-42. 26.Jardim-Perassi, B.V., et al., Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One, 2014. 9(1): p. e85311. 27.Borin, T.F., et al., Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res, 2016. 60(1): p. 3-15. 28.Yeh, C.M., et al., Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget, 2016. 7(16): p. 21952-67. 29.Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett, 2007. 256(2): p. 137-65. 30.Moser, B., et al., Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 2004. 25(2): p. 75-84. 31.Zlotnik, A. and O. Yoshie, The chemokine superfamily revisited. Immunity, 2012. 36(5): p. 705-16. 32.Cheadle, E.J., et al., Eotaxin-2 and colorectal cancer: a potential target for immune therapy. Clin Cancer Res, 2007. 13(19): p. 5719-28. 33.Jin, L., et al., CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget, 2017. 8(3): p. 5135-5148. 34.Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 35.Yang, S.F., et al., Antimetastatic effects of Terminalia catappa L. on oral cancer via a down-regulation of metastasis-associated proteases. Food Chem Toxicol, 2010. 48(4): p. 1052-8. 36.Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. J Cell Sci, 2010. 123(Pt 24): p. 4195-200. 37.Nabeshima, K., et al., Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 2002. 52(4): p. 255-64. 38.Hoon, D.S., et al., Molecular mechanisms of metastasis. J Surg Oncol, 2011. 103(6): p. 508-17. 39.Zhan, M., H. Zhao, and Z.C. Han, Signalling mechanisms of anoikis. Histol Histopathol, 2004. 19(3): p. 973-83. 40.Al-Mehdi, A.B., et al., Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med, 2000. 6(1): p. 100-2. 41.Mannori, G., et al., Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am J Pathol, 1997. 151(1): p. 233-43. 42.Quan, T., et al., Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc, 2009. 14(1): p. 20-4. 43.Kim, J., et al., Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts. J Ethnopharmacol, 2011. 137(1): p. 427-33. 44.Ham, S.A., et al., Peroxisome proliferator-activated receptor delta modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation. J Dermatol Sci, 2014. 76(1): p. 44-50. 45.Hwang, Y.P., et al., Cultivated ginseng suppresses ultraviolet B-induced collagenase activation via mitogen-activated protein kinases and nuclear factor kappaB/activator protein-1-dependent signaling in human dermal fibroblasts. Nutr Res, 2012. 32(6): p. 428-38. 46.Jung, S.K., et al., Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem Pharmacol, 2010. 79(10): p. 1455-61. 47.Sbardella, D., et al., Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med, 2012. 33(2): p. 119-208. 48.Page-McCaw, A., A.J. Ewald, and Z. Werb, Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol, 2007. 8(3): p. 221-33. 49.Kim, S., et al., Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 2009. 16(6-7): p. 573-80. 50.Chou, C.H., et al., MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis. Oncogene, 2012. 31(4): p. 458-68. 51.Lee, J.Y., et al., Gene Expression Profiling of Breast Cancer Brain Metastasis. Sci Rep, 2016. 6: p. 28623. 52.Liu, B., et al., Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells. Mol Med Rep, 2016. 53.Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90. 54.Schaeffer, H.J. and M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 1999. 19(4): p. 2435-44. 55.Chen, Z., et al., MAP kinases. Chem Rev, 2001. 101(8): p. 2449-76. 56.Yoon, S. and R. Seger, The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 2006. 24(1): p. 21-44. 57.Gille, H., A.D. Sharrocks, and P.E. Shaw, Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature, 1992. 358(6385): p. 414-7. 58.Milne, D.M., et al., Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J Biol Chem, 1994. 269(12): p. 9253-60. 59.Yang, B.S., et al., Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol, 1996. 16(2): p. 538-47. 60.Murphy, L.O., et al., Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol, 2002. 4(8): p. 556-64. 61.Morton, S., et al., A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. Embo j, 2003. 22(15): p. 3876-86. 62.Weston, C.R. and R.J. Davis, The JNK signal transduction pathway. Curr Opin Genet Dev, 2002. 12(1): p. 14-21. 63.Adler, V., C.C. Franklin, and A.S. Kraft, Phorbol esters stimulate the phosphorylation of c-Jun but not v-Jun: regulation by the N-terminal delta domain. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5341-5. 64.Ip, Y.T. and R.J. Davis, Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol, 1998. 10(2): p. 205-19. 65.Smeal, T., et al., Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature, 1991. 354(6353): p. 494-6. 66.Kennedy, N.J. and R.J. Davis, Role of JNK in tumor development. Cell Cycle, 2003. 2(3): p. 199-201. 67.Zarubin, T. and J. Han, Activation and signaling of the p38 MAP kinase pathway. Cell Res, 2005. 15(1): p. 11-8. 68.Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001. 81(2): p. 807-69. 69.Kumar, S., J. Boehm, and J.C. Lee, p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov, 2003. 2(9): p. 717-26. 70.Chen, X.F., et al., Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Mol Biol Rep, 2012. 39(4): p. 3549-56. 71.Liu, K.C., et al., Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep, 2011. 26(1): p. 177-84. 72.Hsieh, Y.S., et al., Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 2007. 28(5): p. 977-87. 73.Sato, H., et al., A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 1994. 370(6484): p. 61-5. 74.Stamenkovic, I., Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol, 2000. 10(6): p. 415-33. 75.Cutando, A., et al., Role of melatonin in cancer treatment. Anticancer Res, 2012. 32(7): p. 2747-53. 76.Yoon, S.O., et al., Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003. 36(1): p. 128-37. 77.Li, H., et al., Chemokine CCL24 promotes the growth and invasiveness of trophoblasts through ERK1/2 and PI3K signaling pathways in human early pregnancy. Reproduction, 2015. 150(5): p. 417-27. 78.Li, H., et al., Trophoblasts-derived chemokine CCL24 promotes the proliferation, growth and apoptosis of decidual stromal cells in human early pregnancy. Int J Clin Exp Pathol, 2013. 6(6): p. 1028-37. 79.Ho, H.Y., et al., Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res, 2016. 61(4): p. 479-492.
|