(3.232.129.123) 您好!臺灣時間:2021/03/06 01:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張慈怡
研究生(外文):Tzu-Yi Chang
論文名稱:猴頭菇乙醇萃出物對改善tert-butyl hydroperoxide誘發神經瘤母細胞SK-N-SH-MJD78 凋亡之功效
論文名稱(外文):Treatment of Hericium Erinaceus Ethanol Extract on tert-butyl Hydroperoxide-induced Apoptosis in Neuroblastoma SK-N-SH-MJD78 Cells
指導教授:劉凱莉劉凱莉引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:90
中文關鍵詞:脊髓小腦共濟失調症第3型三級丁基過氧化氫猴頭菇細胞凋亡
外文關鍵詞:Spinocerebellar ataxia type 3tert-butyl hydroperoxideHericium erinaceusapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
脊髓小腦共濟失調症第三型(Spinocerebellar ataxia type 3, SCA3)為顯性遺傳神經退化性疾病,屬於多麩醯胺酸(Polyglutamine, polyQ)疾病的其中之一。雖然SCA3致病機制至今仍不清楚,但已知ATXN3/MJD1基因的ploy CAG 序列重複次數突變,使轉譯成ataxin-3蛋白質多麩醯胺酸鏈[Polyglutamine (polyQ) tract]中glutamine重複個數增加至60~87個,為SCA3疾病之致病蛋白。過去文獻指出,相較於正常的ataxin-3蛋白質,轉殖polyQ突變ataxin-3基因的SK-N-SH神經瘤母細胞株對促氧化劑tert-butyl hydroperoxide (tBH)誘發細胞死亡的耐受性差。猴頭菇(Hericium erinaceus)在日本及中國是一種常做為重要的藥用及食用蕈菇類,其藥理功能包括抗氧化、抗凋亡和緩解巴金森氏症的神經退化症狀等生理功效,但沒有研究探討猴頭菇是否可改善SCA3病人神經退化的狀況。本研究以基因轉殖表現polyQ突變ataxin-3蛋白質的SK-N-SH-MJD78神經瘤母細胞株為實驗模式,評估猴頭菇乙醇萃出物(Hericium erinaceus ethanol extract, HE)對改善tBH造成SK-N-SH-MJD78神經細胞凋亡的功效與相關機制。SK-N-SH-MJD78細胞給予tBH (6 μM)和HE (1.25、2.5或5 μg/ml)共同處理48小時後,利用流式細胞儀(flow cytometry)分析細胞凋亡的狀況發現HE可顯著抑制tBH誘發SK-N-SH-MJD78的細胞凋亡。在tBH處理的SK-N-SH-MJD78神經瘤母細胞添加HE會使BAX對Bcl-2蛋白質表現比值下降,減少促凋亡蛋白質caspase-9、caspase-3、caspase-7活化和抑制PARP降解,並降低細胞質中突變ataxin-3蛋白質表現。除此之外,HE除可向下調節tBH誘發細胞質和細胞核p53蛋白質表現外,亦可回復tBH處理造成轉錄因子p65核蛋白表現和NF-κB轉錄活性下降。綜合以上研究結果可知,HE可降低突變ataxin-3和p53蛋白質表現並回復NF-κB轉錄活性,進而抑制促凋亡蛋白質活化,有助於改善tBH誘發神經瘤母細胞SK-N-SH-MJD78凋亡。
Spinocerebellar ataxia type 3 (SCA3), an autosomal dominant neurodegenerative disorder, is one of the member of polyglutamine diseases. Up to now, although the exact pathogenesis of SCA3 are yet unclear, the findings of the present studies support that polyglutamine mutant ataxin-3 is the causive protein of SCA3. Abnormal ploy CAG trinucleotide expansion of repeat-number from 60 to 87 in the ATXN3/MJD1 gene, which translated into ataxin-3 with large expansion of polyglutamine (polyQ) tract, a hallmarks of SCA3.The previous study showed that compared with normal ataxin-3, neuroblastoma SK-N-SH cells transfected with polyQ mutnat ataxtin-3 were less tolerance to pro-oxidant tert-butyl hydroperoxide (tBH) induced cell death. Hericium erinaceus consumed as a medicinal and edible mushroom in Japan and China, has shown the pharmacological effects such as antioxidation, antiapoptosis and decrease of neurodegeneration in Parkinson’s disease. The health benefits of Hericium erinaceus in SCA3 is unknown. In this study, We use neuroblastoma SK-N-SH-MJD78 cells which express polyQ mutant ataxin-3 protien to investigate the effect and mechanism of Hericium erinaceus ethanol extract (HE) on SK-N-SH-MJD78 cells apoptosis induced by tBH. Flow cytometry analysis showed that SK-N-SH-MJD78 cells treated with tBH (6 μM) and HE (1.25, 2.5 or 5 μg/ml) for 48 hours, significantly inhibited tBH-induced apoptosis. In tBH treated SK-N-SH-MJD78 cells, HE attenuated the ratio of BAX to Bcl-2 protein, the activation of pro-apoptotic proteins caspase-9, caspase-3, caspase-7 and inhibited PARP cleavage, as well as expression of mutant ataxin-3 protein levels in cytoplasm. Furthermore, HE can downregulate in the levels of p53 protein in both cytoplasm and nucleus as well as restore the transcription factor p65 nucleus protein expression and NF-κB transcriptional activity in tBH treated SK-N-SH-MJD78 cells. In summary, HE through decreases of mutant ataxin-3 and p53 protein expression, as well as restoration of the transcriptional activity of NF-κB, which results in inhition of pro-apoptotic protein activation, has inhibitory effect on tBH-induced apoptosis in neuroblastoma SK-N-SH-MJD78 cells.
目錄………………………………………………………………………I
圖次………………………………………………………………………II
縮寫表…………………………………………………………………III
摘要………………………………………………………………………IV
Abstract…………………………………………………………………VI
壹、文獻探討……………………………………………………………1
一、脊髓小腦共濟失調症第3型
(Spinocerebellar ataxia type 3,SCA3)……………………………1
二、ataxin-3蛋白質……………………………………………………3
三、轉錄因子p53和nuclear factor-kappa B (NF-kB)……………10
四、猴頭菇(Hericium erinaceus)……………………………………15
貳、研究目的……………………………………………………………19
參、實驗模式……………………………………………………………20
肆、實驗材料……………………………………………………………21
伍、實驗方法……………………………………………………………30
一、細胞培養與處理(Cell culture and treatment)………………30
二、聚合酶連鎖反應分析(Polymerase chain reaction)…………31
三、流式細胞術分析(Flow cytometry) ……………………………33
四、細胞蛋白質表現量分析……………………………………………34
五、細胞報導基因分析(Reporter gene assay)……………………38
六、統計分析……………………………………………………………39
陸、實驗結果……………………………………………………………40
柒、討論 ………………………………………………………………47
捌、結論…………………………………………………………………55
玖、結果圖表……………………………………………………………56
拾、參考文獻…………………………………………………………69
1.Costa MC, Paulson HL. Toward understanding Machado-Joseph disease. Progress in neurobiology 2012;97(2):239-257. doi:10.1016/j.pneurobio.2011.11.006.
2.Schmidt T, Schmidt J, Hübener J. Model Systems for Spinocerebellar Ataxias: Lessons Learned About the Pathogenesis. Edtion ed. Spinocerebellar Ataxia: InTech, 2012.
3.Lima M, Costa MC, Montiel R, Ferro A, Santos C, Silva C, Bettencourt C, Sousa A, Sequeiros J, Coutinho P, Maciel P. Population genetics of wild-type CAG repeats in the Machado-Joseph disease gene in Portugal. Human heredity 2005;60(3):156-163. doi:10.1159/000090035.
4.Maciel P, Costa MC, Ferro A, Rousseau M, Santos CS, Gaspar C, Barros J, Rouleau GA, Coutinho P, Sequeiros J. Improvement in the molecular diagnosis of Machado-Joseph disease. Archives of neurology 2001;58(11):1821-1827. doi: 10.1001/archneur.58.11.1821.
5.Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature genetics 1994;8(3):221-228. doi: 10.1038/ng1194-221.
6.La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991;352(6330):77-79. doi:10.1038/352077a0.
7.宋興旺, 唐北沙, 江泓, 沈潞, 楊茜, 廖書勝, 李清華, 湯建光。 湖南漢族人群遺傳性脊髓小腦型共濟失調患者三核苷酸突變頻率分佈。中南大學學報 (醫學版) 2006;31(5):702-705.
8.Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, Sasaki R, Koide R, Igarashi S, Hayashi S, Takiyama Y, Nishizawa M, Tanaka H, Zoghbi H, Brice A, Tsuji S. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. American journal of human genetics. 1998;63(4):1060-1066. doi: 10.1086/302067.
9.Soong BW, Lu YC, Choo KB, Lee HY. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Archives of neurology 2001;58(7):1105-1109. doi:10.1001/archneur.58.7.1105.
10.Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon‐Caen O, Julien J. Spinocerebellar ataxia 3 and Machado‐Joseph disease: clinical, molecular, and neuropathological features. Annals of neurology 1996;39(4):490-499. doi:10.1002/ana.410390411.
11.Huang SR, Wu YT, Jao CW, Soong BW, Lirng JF, Wu HM, Wang PS. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. NeuroImage Clinical 2017;13:97-105. doi: 10.1016/j.nicl.2016.11.007.
12.Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386(6624):493-495. doi: 10.1038/386493a0.
13.Van PH, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nature Reviews Neuroscience 2000;1(3):191-198. doi: 10.1038/35044558.
14.Purdey M. The pathogenesis of Machado Joseph Disease: a high manganese/low magnesium initiated CAG expansion mutation in susceptible genotypes? Journal of the American College of Nutrition 2004;23(6):715S-729S. doi: 10.1080/07315724.2004.10719415.
15.Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY, Wang HL. Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiology of disease 2008;31(1):89-101. doi:10.1016/j.nbd.2008.03.011.
16.Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin‐3. The European Molecular Biology Organization journal 2009;28(4):372-382. doi: 10.1038/emboj.2008.289.
17.Chow MK, Mackay JP, Whisstock JC, Scanlon MJ, Bottomley SP. Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochemical and biophysical research communications 2004;322(2):387-394. doi:10.1016/j.bbrc.2004.07.131.
18.Chai Y, Berke SS, Cohen RE, Paulson HL. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. The Journal of Biological Chemistry 2004;279(5):3605-3611. doi: 10.1074/jbc.M310939200.
19.Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Human molecular genetics 2003;12(23):3195-3205. doi:10.1093/hmg/ddg344.
20.Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN. Machado‐Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Annals of neurology 1997;41(4):453-462. doi: 10.1002/ana.410410408.
21.Fujigasaki H, Uchihara T, Koyano S, Iwabuchi K, Yagishita S, Makifuchi T, Nakamura A, Ishida K, Toru S, Hirai S, Ishikawa K, Tanabe T, Mizusawa H. Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Journal of neurology and experimental neuroscience 2000;165(2):248-256. doi: 10.1006/exnr.2000.7479.
22.Verhoef LG, Lindsten K, Masucci MG, Dantuma NP. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human molecular genetics 2002;11(22):2689-2700. doi:10.1093/hmg/11.22.2689.
23.De Pril, R., Fischer, D.F., Maat-Schieman, M.L., Hobo, B., de Vos, R.A., Brunt, E.R., Hol, E.M., Roos, R.A. and van Leeuwen, F.W. Accumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases. Human molecular genetics 2004;13(16):1803-1813. doi: 10.1093/hmg/ddh188.
24.Chen CM, Weng YT, Chen WL, Lin TH, Chao CY, Lin CH, Chen IC, Lee LC, Lin HY, Wu YR, Chen YC, Chang KH, Tang HY, Cheng ML, Lee-Chen GJ, Lin JY. Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. Free radical biology & medicine 2014;71:339-350. doi: 10.1016/j.freeradbiomed.2014.03.023.
25.Yu YC, Kuo CL, Cheng WL, Liu CS, Hsieh M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. Journal of neuroscience research 2009;87(8):1884-1891. doi: 10.1002/jnr.22011.
26.Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, Lii CK, Nukina N, Hsieh M. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. Federation of European Biochemical Societies letters 2003;546(2-3):307-314. doi:10.1016/s0014-5793(03)00605-7.
27.Chang KH, Chen WL, Wu YR, Lin TH, Wu YC, Chao CY, Lin JY, Lee LC, Chen YC, Lee-Chen GJ, Chen CM. Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology 2014;81:166-175. doi: 10.1016/j.neuropharm.2014.01.032.
28.Kim SJ, Kim TS, Hong S, Rhim H, Kim IY, Kang S. Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1-expressing cells. Neuroscience Letters 2003;348(1):21-24. doi: 10.1016/s0304-3940(03)00657-8.
29.Araujo J, Breuer P, Dieringer S, Krauss S, Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U, Evert BO. FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Human molecular genetics 2011;20(15):2928-2941. doi: 10.1093/hmg/ddr197.
30.Haidara K, Marion M, Marielle GB, Denizeau F, Diana A. AB. Implication of caspases and subcellular compartments in tert-butylhydroperoxide induced apoptosis. Toxicology and applied pharmacology. 2008;229(1):65-76. doi: 10.1016/j.taap.2008.01.010.
31.Kim YS, Lee SJ, Hwang JW, Kim EK, Kim SE, Kim EH, Moon SH, Jeon BT, Park PJ. In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food and chemical toxicology 2012;50(11):4191-4198. doi: 10.1016/j.fct.2012.08.015.
32.Amoroso S, D''Alessio A, Sirabella R, Di Renzo G, Annunziato L. Ca(2+)-independent caspase-3 but not Ca(2+)-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis. Journal of neuroscience research 2002;68(4):454-462. doi: 10.1002/jnr.10199.
33.Chu CY, Tseng TH, Hwang JM, Chou FP, Wang CJ. Protective effects of capillarisin on tert-butylhydroperoxide-induced oxidative damage in rat primary hepatocytes. Archives of toxicology 1999;73(4):263-268. doi: 10.1007/s002040050615.
34.Lazze M, Pizzala R, Savio M, Stivala L, Prosperi E, Bianchi L. Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2003;535(1):103-115. doi:10.1016/S1383-5718(02)00285-1.
35.Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972;26(4):239-257. doi:10.1111/j.1365-2796.2005.01570.x.
36.Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: definition, mechanisms, and relevance to disease. The American Journal of Medicine 1999;107(5):489-506. doi: 10.1016/s0002-9343(99)00259-4.
37.Savill J, Fadok V, Henson P, Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunology today 1993;14(3):131-136. doi:10.1016/0167-5699(93)90215-7.
38.Coucouvanis E, Martin GR. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 1995;83(2):279-287. doi: 10.1016/0092-8674(95)90169-8.
39.Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88(3):347-254. doi:10.1016/S0092-8674(00)81873-5.
40.Greenhalgh DG. The role of apoptosis in wound healing. The international journal of biochemistry & cell biology 1998;30(9):1019-1030. doi: 10.1016/S1357-2725(98)00058-2.
41.Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology 2007;35(4):495-516. doi: 10.1080/01926230701320337.
42.Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Acta biochimica et biophysica 2012;1823(10):1767-1777. doi:10.1016/j.bbamcr.2012.06.019.
43.Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang H-G, Reed JC, Nicholson DW, Alnemri ES. Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. The Journal of cell biology 1999;144(2):281-292. doi:10.1083/jcb.144.2.281.
44.Fan TJ, Han LH, Cong RS, Liang J. Caspase Family Proteases and Apoptosis. Acta biochimica et biophysica Sinica 2005;37(11):719-727. doi: 10.1111/j.1745-7270.2005.00108.x.
45.Tsai HF, Tsai HJ, Hsieh M. Full-length expanded ataxin-3 enhances mitochondrial-mediated cell death and decreases Bcl-2 expression in human neuroblastoma cells. Biochemical and biophysical research communications 2004;324(4):1274-1282. doi:10.1016/j.bbrc.2004.09.192.
46.Chen Y, Chen C. Corilagin prevents tert-butyl hydroperoxide-induced oxidative stress injury in cultured N9 murine microglia cells. Neurochemistry international 2011;59(2):290-296. doi:10.1016/j.neuint.2011.05.020.
47.Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 2013;306:114-123. doi: 10.1016/j.tox.2013.02.010.
48.Kang N, Zhang JH, Qiu F, Tashiro S, Onodera S, Ikejima T. Inhibition of EGFR signaling augments oridonin-induced apoptosis in human laryngeal cancer cells via enhancing oxidative stress coincident with activation of both the intrinsic and extrinsic apoptotic pathways. Cancer letters 2010;294(2):147-158. doi: 10.1016/j.canlet.2010.01.032.
49.Nethia MK, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment cell & melanoma research 2014;27(4):525-539. doi:10.1111/pcmr.12242.
50.Han L, Du LB, Kumar A, Jia HY, Liang XJ, Tian Q, Nie GJ, Liu Y. Inhibitory effects of trolox-encapsulated chitosan nanoparticles on tert-butylhydroperoxide induced RAW264.7 apoptosis. Biomaterials 2012;33(33):8517-8528. doi: 10.1016/j.biomaterials.2012.07.034.
51.Chou AH, Yeh TH, Kuo YL, Kao YC, Jou MJ, Hsu CY, Tsai SR, Kakizuka A, Wang HL. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiology of disease 2006;21(2):333-345. doi: 10.1016/j.nbd.2005.07.011.
52.Goswami A, Dikshit P, Mishra A, Nukina N, Jana NR. Expression of expanded polyglutamine proteins suppresses the activation of transcription factor NFkappaB. The Journal of biological chemistry 2006;281(48):37017-37024. doi: 10.1074/jbc.M608095200.
53.Shibata T, Iio K, Kawai Y, Shibata N, Kawaguchi M, Toi S, Kobayashi M, Kobayashi M, Yamamoto K, Uchida K. Identification of a lipid peroxidation product as a potential trigger of the p53 pathway. The Journal of biological chemistry 2006;281(2):1196-1204. doi:10.1074/jbc.M509065200.
54.Chou AH, Lin AC, Hong KY, Hu SH, Chen YL, Chen JY, Wang HL. p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochemistry international 2011;58(2):145-152. doi:10.1016/j.neuint.2010.11.005.
55.Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, Zvaifler NJ, Green DR, Firestein GS. Regulation of joint destruction and inflammation by p53 in Collagen-Induced Arthritis. The American Journal of Pathology 2002;160(1):123-130. doi:10.1016/s0002-9440(10)64356-8.
56.Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochemical and biophysical research communications 2005;331(3):761-777. doi:10.1016/j.bbrc.2005.03.149.
57.Safa M, Tavasoli B, Manafi R, Kiani F, Kashiri M, Ebrahimi S, Kazemi A. Indole-3-carbinol suppresses NF-kappaB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells. Tumour biology 2015;36(5):3919-3930. doi: 10.1007/s13277-014-3035-1.
58.Speidel D. Transcription-independent p53 apoptosis: an alternative route to death. Trends in cell biology 2010;20(1):14-24. doi: 10.1016/j.tcb.2009.10.002.
59.Dashzeveg N, Yoshida K. Cell death decision by p53 via control of the mitochondrial membrane. Cancer letters 2015;367(2):108-112. doi:10.1016/j.canlet.2015.07.019.
60.Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H. Intracellular Aβ42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. The Federation of American Societies for Experimental Biology Journal 2005;19(2):255-257. doi: 10.1096/fj.04-2637fje.
61.Duplan E, Giordano C, Checler F, Costa CA. Direct alpha-synuclein promoter transactivation by the tumor suppressor p53. Molecular neurodegeneration 2016;11:13-21. doi:10.1186/s13024-016-0079-2.
62.Trimmer PA, Smith TS, Jung AB, Bennett JP. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 1996;5(3):233-239. doi:10.1006/neur.1996.0031.
63.Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA, Snyder SH, Sawa A. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington''s disease. Neuron 2005;47(1):29-41. doi:10.1016/j.neuron.2005.06.005.
64.Wang HL, Chou AH, Lin AC, Chen SY, Weng YH, Yeh TH. Polyglutamine-expanded ataxin-7 upregulates Bax expression by activating p53 in cerebellar and inferior olivary neurons. Experimental neurology 2010;224(2):486-494. doi:10.1016/j.expneurol.2010.05.011.
65.Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, Liu C, Huang M, Schmitt I, Wullner U, Niu Y, Guo C,Wang Q, Tang TS. The Machado-Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53. Public Library of Science Biology 2016;14(11). doi:10.1371/journal.pbio.2000733.
66.Nabel GJ, Verma IM. Proposed NF-kappa B/I-kappa B family nomenclature. Genes & Development 1993;7(11):2063. doi:10.1101/gad.7.11.2063.
67.Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004;6(3):203-208. doi: 10.1016/j.ccr.2004.09.003.
68.Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nature reviews Cancer 2002;2(4):301-310. doi: 10.1038/nrc780.
69.Milano A, Perri F, Caponigro F. The ubiquitin–proteasome system as a molecular target in solid tumors: an update on bortezomib. OncoTargets and therapy 2009;2:171-178.
70.Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Molecular pharmacology 2007;71(6):1703-14. doi:10.1124/mol.107.034512.
71.Guerrini L, Blasi F, Suzanne DD. Synaptic activation of NF-kappa B by glutamate in cerebellar granule neurons in vitro. Proceedings of the National Academy of Sciences 1995;92(20):9077-9081.
72.Hamanoue M, Middleton G, Wyatt S, Jaffray E, Hay RT, Davies AM. p75-mediated NF-κB activation enhances the survival response of developing sensory neurons to nerve growth factor. Molecular and Cellular Neuroscience 1999;14(1):28-40. doi:10.1006/mcne.1999.0770.
73.Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 2001;412(6847):641-647. doi: 10.1038/35088074.
74.Kaltschmidt B, Widera D, Kaltschmidt C. Signaling via NF-kappaB in the nervous system. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2005;1745(3):287-299. doi:10.1016/j.bbamcr.2005.05.009.
75.Reijonen S, Kukkonen JP, Hyrskyluoto A, Kivinen J, Kairisalo M, Takei N, Lindholm D, Korhonen L. Downregulation of NF-kappaB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cellular and molecular life sciences 2010;67(11):1929-1941. doi: 10.1007/s00018-010-0305-y.
76.Wang HL, He CY, Chou AH, Yeh TH, Chen YL, Li AH. Polyglutamine-expanded ataxin-7 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons. Cell Signal 2007;19(3):573-581. doi: 10.1016/j.cellsig.2006.08.006.
77.Webster GA, Perkins ND. Transcriptional cross talk between NF-κB and p53. Molecular and cellular biology 1999;19(5):3485-3495. doi:10.1128/MCB.19.5.3485.
78.Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, Arya A, Wong WF, Mustafa MR. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BioMed Central complementary and alternative medicine 2013;13:166-179. doi: 10.1186/1472-6882-13-166.
79.Culmsee C, Siewe J, Junker V, Retiounskaia M, Schwarz S, Camandola S, El-Metainy S, Behnke H, Mattson MP, Krieglstein J. Reciprocal inhibition of p53 and nuclear factor-κB transcriptional activities determines cell survival or death in neurons. Journal of Neuroscience 2003;23(24):8586-8595.
80.Ghose J, Sinha M, Das E, Jana NR, Bhattacharyya NP. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington''s disease. Public Library of Science One 2011;6(8):e23837-e23857. doi: 10.1371/journal.pone.0023837.
81.Lee KF, Chen JH, Teng CC, Shen CH, Hsieh MC, Lu CC, Lee KC, Lee LY, Chen WP, Chen CC, Huang WS, Kuo HC. Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. International journal of molecular science 2014;15(9):15073-15089. doi: 10.3390/ijms150915073.
82.Wong JY, Abdulla MA, Raman J, Phan CW, Kuppusamy UR, Golbabapour S, Sabaratnam V. Gastroprotective Effects of Lion''s Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) Extract against Ethanol-Induced Ulcer in Rats. Evidence-based complementary and alternative medicine 2013;2013:492976-492984. doi: 10.1155/2013/492976.
83.Kim SP, Kang MY, Kim JH, Nam SH, Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. Journal of agricultural and food chemistry 2011;59(18):9861-9869. doi: 10.1021/jf201944n.
84.Kim SP, Nam SH, Friedman M. Hericium erinaceus (Lion''s Mane) mushroom extracts inhibit metastasis of cancer cells to the lung in CT-26 colon cancer-tansplanted mice. Journal of agricultural and food chemistry 2013;61(20):4898-4904. doi: 10.1021/jf400916c.
85.Liang B, Guo Z, Xie F, Zhao A. Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats. BMC complementary and alternative medicine 2013;13(1):2532-2538. doi: 10.1186/1472-6882-13-253.
86.Wang AH, Sun ZC, Zhuo YF, Xu YT, He YL. Protective Effect of Ethanol Extracts of Hericium erinaceus on Alloxan-Induced Diabetic Neuropathic Pain in Rats. Evidence-based complementary and alternative medicine 2015;2015:595480-595485. doi:10.1155/2015/595480.
87.Ma BJ, Shen JW, Yu HY, Ruan Y, Wu TT, Zhao X. Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis inHericium erinaceus. Mycology 2010;1(2):92-98. doi:10.1080/21501201003735556.
88.Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytotherapy research 2009;23(3):367-372. doi: 10.1002/ptr.2634.
89.Nagano M, Shimizu K, Kondo R, Hayashi C, Sato D, Kitagawa K, Ohnuki K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomedical Research 2010;31(4):231-237. doi:10.2220/biomedres.31.231.
90.Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid β (25-35) peptide-induced learning and memory deficits in mice. Biomedical Research 2011;32(1):67-72. doi:10.2220/biomedres.32.67.
91.Tzeng TT, Chen CC, Lee LY, Chen WP, Lu CK, Shen CC, Huang F. CY, Chen CC, Shiao1 YJ. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer''s disease-related pathologies in APPswe/PS1dE9 transgenic mice. Journal of biomedical science 2016;23(1):49-60. doi: 10.1186/s12929-016-0266-z.
92.Kuo HC, Lu CC, Shen CH, Tung SY, Meng CH, Lee KC, Lee LY, Chen CC, Teng CC, Huang WS, Chen TC, Lee KF. Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. Journal of translational medicine 2016;14:78-91. doi:10.1186/s12967-016-0831-y.
93.Chen CC, Tzeng TT, Chen CC, Ni CL, Lee LY, Chen WP, Shiao YJ, Shen CC. Erinacine S, a Rare Sesterterpene from the Mycelia of Hericium erinaceus. Journal of natural products 2016;79(2):438-441. doi:10.1021/acs.jnatprod.5b00474.
94.Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress 2015;14(10):91-113. doi: 10.1007/s11557-015-1105-4.
95.Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annual review of neuroscience 2000;23(1):217-247. doi:10.1146/annurev.neuro.23.1.217.
96.Evert BO, Vogt IR, Vieira-Saecker AM, Ozimek L, De Vos RA, Brunt ER, Klockgether T, Wüllner U. Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. Journal of Neuropathology & Experimental Neurology 2003;62(10):1006-1018. doi: 10.1093/jnen/62.10.1006.
97.Kim HJ, Lee EK, Park MH, Ha YM, Jung KJ, Kim MS, Kim MK, Yu BP, Chung HY. Ferulate protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in tert-butyl hydroperoxide-induced Caco-2 cells. Phytotherapy research 2013;27(3):362-367. doi: 10.1002/ptr.4717.
98.Lee H, Kim J, Lee SY, Park JH, Hwang GS. Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells. Journal of ginseng research 2012;36(3):248-255. doi: 10.5142/jgr.2012.36.3.248.
99.Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochemical pharmacology 2005;70(12):1796-1806. doi: 10.1016/j.bcp.2005.08.022.
100.Mori K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, Nakahata N. Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biological and Pharmaceutical Bulletin 2008;31(9):1727-1732. doi:10.1248/bpb.31.1727.
101.Chaldarov GN, Tonchev AB, Aloe L. NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Rivista di psichiatria 2009;44(2):79-87. doi: 10.1708/420.4977.
102.Park YS, Lee HS, Won MH, Lee JH, Lee SY, Lee HY. Effect of an exo-polysaccharide from the culture broth of Hericium erinaceus on enhancement of growth and differentiation of rat adrenal nerve cells. Cytotechnology 2002;39(3):155-162. doi: 10.1023/A:1023963509393.
103.Chang CH, Chen Y, Yew XX, Chen HX, Kim JX, Chang CC, Peng CC, Peng RY. Improvement of erinacine A productivity in Hericium erinaceus mycelia and its neuroprotective bioactivity against the glutamate-insulted apoptosis. Food Science and Technology 2016;65:1100-1108. doi: 10.1016/j.lwt.2015.08.014.
104.Yi J, Zhang L, Tang B, Han W, Zhou Y, Chen Z, Jia D, Jiang H. Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. PLoS One 2013;8(1):e54792-e54801. doi:10.1371/journal.pone.0054792.
105.Lee MK, Kang SJ, Poncz M, Song KJ, Park KS. Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Experimental & molecular medicine 2007;39(3):376-384. doi: 10.1038/emm.2007.42.
106.Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003;22(53):8590-8607. doi:10.1038/sj.onc.1207102.
107.Khan M, Yi F, Rasul A, Li T, Wang N, Gao H, Gao R, Ma T. Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. International Union of Biochemistry and Molecular Biology Life 2012;64(9):783-794. doi: 10.1002/iub.1068.
108.Miller F, Pozniak C, Walsh G. Neuronal life and death: an essential role for the p53 family. Cell death and differentiation 2000;7(10):880-888. doi: 10.1038/sj.cdd.4400736.
109.Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004;303(5660):1010-1014. doi: 10.1126/science.1092734.
110.Mattson MP. NF-kappaB in the survival and plasticity of neurons. Neurochemical research 2005;30(6-7):883-893. doi:10.1007/s11064-005-6961-x.
111.Middleton G, Hamanoue M, Enokido Y, Wyatt S, Pennica D, Jaffray E, Hay RT, Davies AM. Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. The Journal of cell biology 2000;148(2):325-332. doi: 10.1083/jcb.148.2.325.
112.Laprairie RB, Warford JR, Hutchings S, Robertson GS, Kelly ME, Denovan-Wright EM. The cytokine and endocannabinoid systems are co-regulated by NF-kappaB p65/RelA in cell culture and transgenic mouse models of Huntington''s disease and in striatal tissue from Huntington''s disease patients. Journal of neuroimmunology 2014;267(1-2):61-72. doi: 10.1016/j.jneuroim.2013.12.008.
113.Hyrskyluoto A, Pulli I, Tornqvist K, Ho TH, Korhonen L, Lindholm D. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway. Cell death & disease 2013;4:e646-e654. doi:10.1038/cddis.2013.170.
114.Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, Hoffmann F, Landshamer S, Wagner E, Culmsee C. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell death and differentiation 2007;14(8):1529-1541. doi: 10.1038/sj.cdd.4402159.
115.Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Human molecular genetics 1999;8(4):673-682. doi: 10.1093/hmg/8.4.673.
116.Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010;133:93-104. doi: 10.1093/brain/awp292.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔