(3.235.108.188) 您好!臺灣時間:2021/02/28 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邵敬雅
研究生(外文):Ching-Ya Shao
論文名稱:以實驗動物與人體試驗評估涼茶對體內一氧化氮生成之影響
論文名稱(外文):Effect of herbal tea on the nitric oxide production accessed by laboratory rats and human subjects
指導教授:林以勤林以勤引用關係
指導教授(外文):Yi-Chin Lin
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:119
中文關鍵詞:一氧化氮Wistar大鼠涼茶人體試驗
外文關鍵詞:nitric oxideWistar ratherbal teahuman trial
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
涼茶為以多種中草藥以及藥食兩用植物,經煲製調配而成的中草藥複方飲品。傳統醫學記載,涼茶具有清熱解毒、去濕生津、清火、明目、散結和消腫等作用。研究指出,涼茶中的中草藥成分 (金銀花、夏枯草、仙草、菊花、布渣葉、甘草和雞蛋花) 具有降血壓、促進血管舒張、抗氧化及抗發炎等功效。一氧化氮為體內具有訊息傳導功能之氣體分子,其在體內之生成量及生物利用率,可作為內皮細胞機能失調、心血管疾病罹患風險及動脈粥狀硬化之判斷指標。因此,本篇研究將針對涼茶對於提升體內一氧化氮含量之作用進行探討。本實驗將分成兩部分 (一) 動物試驗:給予6週齡Wistar大鼠涼茶 (90、180和450 mg/kg rat),為期3週,於每週測量其血清與尿液中之一氧化氮含量,在試驗結束時進行犧牲,並取其臟器及脂肪組織進行秤重。(二) 人體試驗:共100位20-50歲健康受試者 (試驗期間共流失2位健康受試者),在為期兩週的涼茶介入下,於試驗開始及結束時進行一般常規體檢,並收集健康受試者之血液與尿液,進行血清生化數值、健康受試者全血細胞計數及血清與尿液一氧化氮含量分析。實驗結果顯示,(一) 給予大鼠涼茶180與450 mg/kg rat之組別,可顯著增加第二週之血清一氧化氮與硝酸鹽之濃度 (p<0.05)。在尿液一氧化氮含量分析結果顯示,給予涼茶之組別,可顯著增加第二週之尿液總一氧化氮含量及硝酸鹽含量。(二) 將100位健康受試者隨機分為介入涼茶及安慰劑之組別,在第0和2週進行抽血、尿液收集及一般身體檢測。實驗結果顯示,在介入涼茶 (n=50) 及安慰劑 (n=48) 之組別間,其年齡、身高、體重、身體質量指數、血清生化參數、全血細胞計數、收縮壓、舒張壓及心率並無顯著差異 (p>0.05)。在血清分析結果顯示,給予涼茶可顯著增加第2週血清總一氧化氮、硝酸鹽及亞硝酸鹽含量。在尿液分析部分,給予涼茶可顯著提升第2週尿液之總一氧化氮及硝酸鹽含量。將健康受試者以性別分組,無論在男性或女性,給予涼茶皆可顯著提升血清總一氧化氮及硝酸鹽含量。此外,在男性部分,給予涼茶亦可顯著提升血清亞硝酸鹽含量,以及尿液中總一氧化氮及硝酸鹽之濃度。以年齡進行分組分析,將其分成20-30、30-40和40-50歲三個組別,只有在年齡層20-30歲之組別,給予涼茶相較於安慰劑組,可顯著增加其血清及尿液總一氧化氮及硝酸鹽,並增加血清亞硝酸鹽含量。根據上述結果得知,涼茶為一安全且具提升體內一氧化氮含量之口服飲品,未來可將其發展為一具心血管保健潛力之產品。
Liang cha is commonly known as traditional herbal tea in Chinese. It is made from a variety of medicinal and edible plants. According to Chinese traditional medicine, herbal tea can be used in relieving discomfort symptoms, such as dispelling inner heat, detoxication, improving vision, and anti-oncotic. Previous studies indicated that herbal tea, including the herbs Lonicera japonica, Prunella vulgaris, Platostoma palustre, Chrysanthemum, Microcos paniculata, Glycyrrhiza uralensis, and Plumeria obtuse. It has been reported to various beneficial biological functions, such as reducing blood pressure, vasodilation, anti-oxidation, and anti-inflammation. Nitric oxide (NO) is one of gas molecules which known to be involved in biological signaling pathway, such as vasodilation. Several studies have shown that internal production and bioavailability of NO can be the indicators of endothelial dysfunction, cardiovascular disease, and atherosclerosis. Therefore, the purpose of this study is to investigate the effect of herbal tea supplementation on nitric oxide production in animal model and human trial. This study includes both animal and human studies: (1) In animal model: Six-weeks-old Wistar rats are given oral administration of different doses of herbal tea supplement (90, 180, and 450 mg/kg rat) for three weeks. The level of nitric oxide in serum and urine are measured at 0, 1, 2, and 3 weeks. (2) In human trial: The study was a parallel randomized human trial. One hundred of healthy adults aged 20 to 50 volunteered to participate in this study (two subjects were lost during the trial). At the beginning and the end of the trial, the participants would be undergoing a routine physical examination, the blood samples and urine samples are collected for the analysis of serum biochemical parameters, serum biochemical parameters, complete blood count, and urine nitric oxide level. (1) The results showed that the serum levels of nitric oxide and nitrate in rats fed with 180 and 450 mg/kg rat of herbal tea were significantly increased as compared to NDS (normal diet with sugar) group. The urine levels of nitric oxide and nitrate in herbal tea group were significantly increased as compared to NDS group during the second week of the experiment. (2) One hundred volunteers were divided into randomly two groups. (herbal tea and placebo). The results showed that there are no significantly difference in the age, height, body weight, body mass index, serum biochemical parameters, complete blood count, systolic pressure, diastolic pressure, and heart rate between herbal tea group (n=50) and placebo (n=48) groups. Serum level of nitric oxide, nitrate, and nitrite in herbal tea group were significantly increased compared to placebo group (p<0.05) at second week. There are similar results in the urine level of nitric oxide and nitrate. Health subjects are grouped by sex, the results indicated that serum nitric oxide and nitrate in herbal tea group were significantly increased as compared to placebo group in both male and female sexes. The concentrations of serum nitrite, and urine nitric oxide and nitrate in herbal tea group were significantly increased as compared to placebo group in men. In addition, health subjects were divided into three age groups (Ages 20-30, 30-40, and 40-50 years), respectively. In ages 20-30 group, the serum levels of nitric oxide, nitrate, and nitrite, and the urine levels of nitric oxide and nitrate were significantly increased as compared to placebo. The results demonstrate that intake of herbal tea can be developed as a healthy drink for prevention of cardiovascular disease through the modulation of nitric oxide in human body.
摘要....................................................I
Abstract..............................................III
目錄....................................................V
圖次....................................................X
表次...................................................XI
縮寫表................................................XII
前言....................................................1
壹、文獻回顧.............................................3
一、涼茶簡介.............................................3
二、一氧化氮 (Nitric oxide, NO)..........................6
(一) 一氧化氮之簡介......................................6
(二) 體內一氧化氮來源....................................7
1. 一氧化氮合成酶 (nitric oxide synthase, NOS)...........7
(1) 神經型一氧化氮合成酶 (neuronal nitric oxide synthase, nNOS)...................................................7
(2) 內皮型一氧化氮合成酶 (endothelial nitric oxide synthase, eNOS).........................................7
(3) 誘導型一氧化氮合成酶 (inducible nitric oxide synthase, iNOS)...................................................8
2. Nitrate–nitrite–nitric oxide pathway.................9
(三) 一氧化氮之生理功能...................................9
1. 一氧化氮與血管舒張 (vasodilation).....................9
2. 一氧化氮與血小板凝集 (platelet aggregation)...........10
3. 一氧化氮與白血球黏附作用 (leucocyte adhesion).........10
4. 一氧化氮與血管平滑肌增生 (vascular smooth muscle proliferation).........................................11
5. 一氧化氮與抗氧化作用 (antioxidative effects)..........11
(四) 提升體內一氧化氮濃度................................12
1. 多酚化合物 (polyphenols).............................12
2. 酒精 (ethanol)......................................13
3. 左旋精胺酸 (L-arginine)..............................14
4. 左旋瓜胺酸 (L-citrulline)............................14
5. 運動 (exercise).....................................15
三、內皮細胞 (endothelial cells)........................16
(一) 內皮細胞之簡介..................................16
(二) 內皮細胞機能失調 (endothelial dysfunction)......17
(三) 內皮細胞機能失調與相關疾病.......................17
1. 內皮細胞機能失調與周邊血管疾病 (peripheral vascular disease)...............................................17
2. 內皮細胞機能失調與高血壓 (hypertension)...............18
3. 內皮細胞機能失調與糖尿病 (diabetes mellitus)..........19
4. 內皮細胞機能失調與冠狀動脈疾病 (coronary disease)......20
5. 內皮細胞機能失調與心臟衰竭 (heart failure)............20
6. 內皮細胞機能失調與慢性腎臟疾病 (chronic kidney disease)...............................................21
7. 內皮細胞機能失調與動脈粥狀硬化 (atherosclerosis).......22
貳、研究目的............................................33
參、材料方法............................................34
一、實驗設計............................................34
第一部分 動物試驗
BioLASCO Experimental Animal Center (2010). Retrieved June 8, 2017, from
file:///C:/Users/User/Downloads/%E6%A8%82%E6%96%AF%E7%A7%91Wistar-Rat-Biochemistry%20(1).pdf.
中醫百科 (2016)。2017年3月11日,取自
https://zhongyibaike.com/wiki/%E5%B8%83%E6%B8%A3%E5%8F%B6
台北市立聯合醫院仁愛院區健康管理中心公開資料 (2009)。2017年5月11日,取自
http://www.tpech.gov.taipei/ct.asp?xItem=184987&ctNode=17768&mp=109151
台安醫院醫藥專欄 (2009)。2017年4月26日,取自
http://www.tahsda.org.tw/newsletters/?p=1448
國立台灣大學醫學院附設醫院檢驗醫學部公開資料 (2016)。2017年5月9日,取自
https://www.ntuh.gov.tw/labmed/%E6%AA%A2%E9%A9%97%E7%9B%AE%E9%8C%84/lists/list3/%E7%94%9F%E5%8C%96.aspx#InplviewHash0e25ee38-e4b3-446c011-879f-82d07e08c445=
國立陽明大學附設醫院醫療支援部門檢驗醫學科公開資料 (2016)。2017年4月13日,取自
http://www.ymuh.ym.edu.tw/index.php/departments/depsupport/medicine/inspection/blood-routine.html
國家衛生研究院電子報 (2015)。2017年3月29日,取自
http://enews.nhri.org.tw/enews_list_new2_more.php?volume_indx=593&showx=showarticle&article_indx=10440
王春霞 (2004) 菊花化學成分的研究進展,中藥材第3期,224-226
何蓉蓉、栗原博、寶麗、姚新生 (2008) 王老吉涼茶對氧化應激負荷小鼠脂代謝的影響,中國實驗方劑學雜誌第10期,31-33
吳釘紅、楊立偉、蘇薇薇 (2004) 野菊花化學成分及藥理研究進展,中藥材2004年第27卷第2期,142-144
周佩萱 (2014) 槲皮素複合補充劑對高脂飲食誘導肥胖大鼠之不易形成體脂肪作用及其分子機制探討,中山醫學大學營養學系碩士論文
林天送 (2011) 一氧化氮醫學,科學發展461期,72-75
林麗莎、張珅、詹岳霖、王增焜、林河通 (2013) 仙草的化學成分和藥理作用研究進展,生物技術進展第6期,448-452
胡姱、李軍、屠鵬飛 (2012) 布渣葉的化學成分研究,中草藥第5期,844-846
高雪巖、王文全、魏勝利、李衛東 (2009) 甘草及其活性成分的藥理活性研究進展,中國中藥雜誌第21期,2695-2700
張玉龍、王夢月、楊靜玉、李曉波 (2015) 炙甘草化學成分及藥理作用研究進展,上海中醫藥大學學報第3期,99-102
張維棠 (2011) 以細胞及動物模式探討黑蒜頭對脂質生成之影響及其分子機制,中山醫學大學營養學系碩士論文
劉曉孔、楊時崇 (2010) 降低心血管疾病風險之飲食及生活型態策略,資訊科技國際期刊第4期,53-67
寶麗、姚新生、何蓉蓉、栗原博 (2008) 廣東涼茶顆粒對拘束負荷誘發小鼠應激性肝損傷的保護作用,中國中藥雜志第6期,664-669
顧曉潔、錢士輝、李友賓、李萍、段金廒 (2007) 夏枯草的化學成分及藥理作用研究進展,中國野生植物資源第2期,5-7
Agnoletti, L., Curello, S., Bachetti, T., Malacarne, F., Gaia, G., Comini, L., Volterrani, M., Bonetti, P., Parrinello, G., Cadei, M., Grigolato, P.G., Ferrari, R. (1999). Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha. Circulation 100, 1983-1991
Anter, E., Thomas, S.R., Schulz, E., Shapira, O.M., Vita, J.A., Keaney, J.F.Jr. (2004). Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols The Journal of Biological Chemistry 279, 46637-46643
Araujo, J.A., Zhang, M., Yin, F. (2012). Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Frontiers in Pharmacology [electronic resource] 3, 119
Avogaro, A., de Kreutzenberg, S.V., Fadini, G. (2008). Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Research and Clinical Practice 2, S94-S101
Bailey, S.J., Blackwell, J.R., Williams, E., Vanhatalo, A., Wylie, L.J., Winyard, P.G., Jones, A.M. (2016). Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide 59, 10-20
Bairey Merz, C.N., Shaw, L.J., Reis, S.E., Bittner, V., Kelsey, S.F., Olson, M., Johnson, B.D., Pepine, C.J., Mankad, S., Sharaf, B.L., Rogers, W.J., Pohost, G.M., Lerman, A., Quyyumi, A.A., Sopko, G.; WISE Investigators. (2006). Insights from the NHLBI-sponsored women''s ischemia syndrome evaluation (WISE) study: Part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. Journal of the American College of Cardiology 47, S21-S29
Balzer, J., Rassaf, T., Heiss, C., Kleinbongard, P., Lauer, T., Merx, M., Heussen, N., Gross, H.B., Keen, C.L., Schroeter, H., Kelm, M. (2008). Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial. Journal of the American College of Cardiology 51, 2141-2149
Bauersachs, J., Widder, J.D. (2008). Endothelial dysfunction in heart failure. Pharmacological Reports : PR 60, 119-126
Benjamin, N., Dutton, J.A., Ritter, J.M. (1991). Human vascular smooth muscle cells inhibit platelet aggregation when incubated with glyceryl trinitrate: evidence for generation of nitric oxide. British Journal of Pharmacology 102, 847-850
Berk, B.C. (2001). Vascular smooth muscle growth: autocrine growth mechanisms. Physiological Reviews 81, 999-1030
Besler, C., Heinrich, K., Rohrer, L., Doerries, C., Riwanto, M., Shih, D.M., Chroni, A., Yonekawa, K., Stein, S., Schaefer, N., Mueller, M., Akhmedov, A., Daniil, G., Manes, C., Templin, C., Wyss, C., Maier, W., Tanner, F.C., Matter, C.M., Corti, R., Furlong, C., Lusis, A.J., von Eckardstein, A., Fogelman, A.M., Lüscher, T.F., Landmesser, U. (2011). Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. The Journal of Clinical Investigation 121, 2693-2708
Bhatt, S.R., Lokhandwala, M.F., Banday, A.A. (2011). Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. European Journal of Pharmacology 667, 258-264
Böhme, G.A., Bon, C., Lemaire, M., Reibaud, M., Piot, O., Stutzmann, J.M., Doble, A., Blanchard, J.C. (1993). Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats. Proceedings of the National Academy of Sciences of the United States of America 90, 9191-9194
Bonetti, P.O., Lerman, L.O., Lerman, A. (2003). Endothelial dysfunction: a marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology 23, 168-75
Boon, A.C., Lam, A.K., Gopalan, V., Benzie, I.F., Briskey, D., Coombes, J.S., Fassett, R.G., Bulmera, A.C. (2015). Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure. Scientific Reports 5, 15482
Boos, C.J., Lip, G.Y., Blann, A.D. (2006). Circulating endothelial cells in cardiovascular disease. Journal of the American College of Cardiology 48, 1538-1547
Bossaller, C., Habib, G.B., Yamamoto, H., Williams, C., Wells, S., Henry, P.D. (1987). Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5''-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. The Journal of Clinical Investigation 79, 170–174
Brandes, R.P. (2014). Endothelial dysfunction and hypertension. Hypertension 64, 924-928
Brevetti, G., Silvestro, A., Di Giacomo, S., Bucur, R., Di Donato, A., Schiano, V., Scopacasa, F. (2003). Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden. Journal of Vascular Surgery 38, 374-379
Brüne, B., Dimmeler, S., Molina y Vedia, L., Lapetina, E.G. (1994). Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sciences 54, 61-70
Brutsaert, D.L. (2003). Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews 83, 59-115
Bryan, N.S., Grisham, M.B. (2007). Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine 43, 645-657
Cai, S., Khoo, J., Channon, K.M. (2005). Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovascular Research 65, 823-831
Carreau, A., Kieda, C., Grillon, C. (2011). Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Experimental Cell Research 317, 29-41
Carvajal, J.A., Germain, A.M., Huidobro-Toro, J.P., Weiner, C.P. (2000). Molecular mechanism of cGMP-mediated smooth muscle relaxation. Journal of Cellular Physiology 184, 409-420
Charakida, M., Masi, S., Lüscher, T.F., Kastelein, J.J., Deanfield, J.E. (2010). Assessment of atherosclerosis: the role of flow-mediated dilatation. European Heart Journal 31, 2854-2861
Chen, L., Daum, G., Chitaley, K., Coats, S.A., Bowen-Pope, D.F., Eigenthaler, M., Thumati, N.R., Walter, U., Clowes, A.W. (2004). Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 24, 1403-1408.
Chen, W.C.W., Saparov, A., Corselli, M., Crisan, M., Zheng, B., Péault, B., Huard, J. (2014). Isolation of blood-vessel-derived multipotent precursors from human skeletal muscle. Journal of Visualized Experiments : JoVE. [electronic resource] 21, e51195
Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Arranz, S., Valderas-Martínez, P., Casas, R., Sacanella, E., Llorach, R., Lamuela-Raventos, R.M., Andres-Lacueva, C., Estruch, R. (2012). Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication. Circulation Research 111, 1065-1068
Cohen, R.A., Weisbrod, R.M., Gericke, M., Yaghoubi, M., Bierl, C., Bolotina, V.M. (1999). Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circulation Research 84, 210-219
Dai, Y.L., Luk, T.H., Siu, C.W., Yiu, K.H., Chan, H.T., Lee, S.W., Li, S.W., Tam, S., Fong, B., Lau, C.P., Tse, H.F. (2010). Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovascular Toxicology 10, 130-138
Davignon, J., Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation 109, 27-32
De Backer, G., Ambrosioni, E., Borch-Johnsen, K., Brotons, C., Cifkova, R., Dallongeville, J., Ebrahim, S., Faergeman, O., Graham, I., Mancia, G., Cats, V.M., Orth-Gomér, K., Perk, J., Pyörälä, K., Rodicio, J.L., Sans, S., Sansoy, V., Sechtem, U., Silber, S., Thomsen, T., Wood, D. (2004). European guidelines on cardiovascular disease prevention in clinical practice. Third joint task force of european and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis 173, 381-391
Deanfield, J.E., Halcox, J.P., Rabelink, T.J. (2007). Endothelial function and dysfunction. Circulation 115, 1285-1295.
Deng, X.S., Deitrich, R.A. (2007). Ethanol metabolism and effects: nitric oxide and its interaction. Current Clinical Pharmacology 2, 145-153
Denninger, J.W., Marletta, M.A. (1999). Guanylate cyclase and the, NO/cGMP signaling pathway. Biochimica et Biophysica Acta 1411, 334-350
Derbyshire, E.R., Marletta, M.A. (2012). Structure and regulation of soluble guanylate cyclase. Annual Review of Biochemistry 81, 533-559
Dharmashankar, K., Widlansky, M.E. (2011). Vascular endothelial function and hypertension: insights and directions. Current Hypertension Reports 12, 448-455.
Di Francescomarino, S., Sciartilli, A., Di Valerio, V., Di Baldassarre, A., Gallina, S. (2009). The effect of physical exercise on endothelial function. Sports Medicine 39, 797-812
Dimmeler, S., Zeiher, A.M. (1999). Nitric oxide-an endothelial cell survival factor. Cell Death and Differentiation 6, 964-968
Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605.
Dong, J.Y., Qin, L.Q., Zhang, Z., Zhao, Y., Wang, J., Arigoni, F., Zhang, W. (2011). Effect of oral l-arginine supplementation on blood pressure: a meta-analysis of randomized, double-blind, placebo-controlled trials. American Heart Journal 162, 959-965
Douglas, D.T., Lisa, A.R., Jeffrey, S.I., Wilmarie, F.S., Christopher, H.S., Sonia, D., Perwez, H., Cecilia, V., Nazareno, P., Stefan, A., Carol, C., Curtis, H., David, D. R., David, A.W. (2008). The chemical biology of nitric oxide. Implications in cellular signaling. Free Radical Biology and Medicine 45, 18–31.
Durand, M.J., Gutterman, D.D. (2013). Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation : the Official Journal of the Microcirculatory Society 20, 239-247.
Durante, W., Kroll, M.H., Christodoulides, N., Peyton, K.J., Schafer, A.I. (1997). Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circulation Research 80, 557-564
el Karib, A.O., Sheng, J., Betz, A.L., Malvin, R.L. (1993). The central effects of a nitric oxide synthase inhibitor (N omega-nitro-L-arginine) on blood pressure and plasma renin. Clinical and Experimental Hypertension 15, 819-832
El-Bassossy, H.M., El-Fawal, R., Fahmy, A. (2012). Arginase inhibition alleviates hypertension associated with diabetes: effect on endothelial dependent relaxation and NO production. Vascular Pharmacology 57, 194-200
Escobales, N., Crespo, M.J. (2005). Oxidative-nitrosative stress in hypertension. Current Vascular Pharmacology 3, 231-246
Esper, R.J., Nordaby, R.A., Vilariño, J.O., Paragano, A., Cacharrón, J.L., Machado, R.A. (2006). Endothelial dysfunction: a comprehensive appraisal. Cardiovascular Diabetology [electronic resource] 5, 4
EUROASPIRE II Study Group. (2005). Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries; principal results from EUROASPIRE II Euro Heart Survey Programme. European Heart Journal 22, 554-572
Favero, G., Paganelli, C., Buffoli, B., Rodella, J.F., Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: life style intervention. BioMed Research International [electronic resource] doi: 10.1155/2014/801896
Fehsel, K., Jalowy, A., Qi, S., Burkart, V., Hartmann, B., Kolb, H. (1993). Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42, 496-500
Félétou, M., Vanhoutte, P.M. (2006). Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). American Journal of Physiology. Heart and Circulatory Physiology 291, H985-H1002
Fleck, C., Schweitzer, F., Karge, E., Busch, M., Stein, G. (2003). Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry 336, 1-12
Fleming, I., Busse, R. (2003). Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 284, R1-R12
Förstermann, U. (2000). Regulation of nitric oxide synthase expression and activity. Nitric Oxide 143, 71-91.
Förstermann, U., Li, H. (2011). Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. British Journal of Pharmacology 164, 213-223
Förstermann, U., Mügge, A., Alheid, U., Haverich, A., Frölich, J.C. (1988). Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circulation Research 62, 185-190
Förstermann, U., Münzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113, 1708-1714
Förstermann, U., Sessa, W. (2012). Nitric oxide synthases: regulation and function.
European Heart Journal 33, 829-837
Förstermann, U., Closs, E.I., Pollock, J.S., Nakane, M., Schwarz, P., Gath, I., Kleinert, H. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23, 1121-1131
Francis, S.H., Busch, J.L., Corbin, J.D., Sibley, D. (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacological Reviews 62, 525-563
Freiman, P.C., Mitchell, G.G., Heistad, D.D., Armstrong, M.L., Harrison, D.G. (1986). Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circulation Research 58, 783-789
Fujiwara, H., Wake, Y., Hashikawa-Hobara, N., Makino, K., Takatori, S., Zamami, Y., Kitamura, Y., Kawasaki, H. (2012). Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds. Journal of Pharmacological Sciences 118, 373-381
Fulton, D., Gratton, J.P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K., Franke, T.F., Papapetropoulos, A., Sessa, W.C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601
Furchgott, R.F., Zawadzki, J.V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376
Gago, B., Lundberg, J.O., Barbosa, R.M., Laranjinha, J. (2007). Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radical Biology & Medicine 43, 1233-1242
Ganguly, P., Alam, S.F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal [Electronic Resource] doi: 10.1186/1475-2891-14-6
Ganz, P., Hsue, P.Y. (2013). Endothelial dysfunction in coronary heart disease is more than a systemic process. European Heart Journal 34, 2025-2027
Garcia, V., Joseph, G., Shkolnik, B., Ding, Y., Zhang, F.F., Gotlinger, K., Falck, J.R., Dakarapu, R., Capdevila, J.H., Bernstein, K.E., Schwartzman, M.L. (2015). Angiotensin II receptor blockade or deletion of vascular endothelial ACE does not prevent vascular dysfunction and remodeling in 20-HETE-dependent hypertension. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 309, R71-R78
Geiger, J., Nolte, C., Walter, U. (1994). Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors. The American Journal of Physiology 267, C236-C244
Gerhard, M., Roddy, M.A., Creager, S.J., Creager, M.A. (1996). Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension 27, 849-853
Gimbrone, M.A. Jr., García-Cardeña, G. (2012). Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovascular Pathology : The Official Journal of the Society for Cardiovascular Pathology 22, 9-15
Glagov, S., Weisenberg, E., Zarins, C.K., Stankunavicius, R., Kolettis, G.J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. The New England Journal of Medicine 316, 1371-1375
Goggins, M.G., Shah, S.A., Goh, J., Cherukuri, A., Weir, D.G., Kelleher, D., Mahmud, N. (2001). Increased urinary nitrite, a marker of nitric oxide, in active inflammatory bowel disease. Mediators of Inflammation 10, 69-73
Gokce, N., Keaney, J.F.Jr., Hunter, L.M., Watkins, M.T., Menzoian, J.O., Vita, J.A. (2002). Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 105, 1567-1572
Gordon, M.B., Jain, R., Beckman, J.A., Creager, M.A. (2002). The contribution of nitric oxide to exercise hyperemia in the human forearm. Vascular Medicine 7, 163-168
Goulopoulou, S., Hannan, J.L., Matsumoto, T., Ogbi, S., Ergul, A., Webb, R.C. (2015). Reduced vascular responses to soluble guanylyl cyclase but increased sensitivity to sildenafil in female rats with type 2 diabetes. American Journal of Physiology. Heart and Circulatory Physiology 309, H297–H304
Gozzelino, R., Soares, M.P. (2014). Coupling heme and iron metabolism via ferritin H chain. Antioxidants & Redox Signaling 20, 1754-1769
Gudi, T., Hong, G.K., Vaandrager, A.B., Lohmann, S.M., Pilz, R.B. (1999). Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase. FASEB journal : Official Publication of the Federation of American Societies for Experimental Biology 13, 2143-2152
Guzik, T.J., Mussa, S., Gastaldi, D., Sadowski, J., Ratnatunga, C., Pillai, R., Channon, K.M. (2002). Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105, 1656-1662
Hambrecht, R., Adams, V., Erbs, S., Linke, A., Kränkel, N., Shu, Y., Baither, Y., Gielen, S., Thiele, H., Gummert, J.F., Mohr, F.W., Schuler, G. (2003). Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107, 3152-3158
Haraldsson, B., Nyström, J. (2012). The glomerular endothelium: new insights on function and structure. Current Opinion in Nephrology and Hypertension 21, 258-263
Hare, J.M., Stamler, J.S. (2005). NO/redox disequilibrium in the failing heart and cardiovascular system. The Journal of Clinical Investigation 115, 509-517
Harris, M.B., Ju, H., Virginia, V.J., Liang, H., Zou, R., Michell, B.J., Chen, Z.P., Kemp, B.E., Venema, R.C. (2001). Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. The Journal of Biological Chemistry 276, 16587-16591
Harrison, D.G., Gongora, M.C. (2009). Oxidative stress and hypertension. The Medical Clinics of North America 93, 621-635
Hays, A.G., Iantorno, M., Soleimanifard, S., Steinberg, A., Schär, M., Gerstenblith, G., Stuber, M., Weiss, R.G. (2015). Coronary vasomotor responses to isometric handgrip exercise are primarily mediated by nitric oxide: a noninvasive MRI test of coronary endothelial function. American Journal of Physiology. Heart and Circulatory Physiology 308, H1343-H1350
Heiss, C., Keen, C.L., Kelm, M. (2010). Flavanols and cardiovascular disease prevention. European Heart Journal 31, 2583-2592
Hernanz, R., Martínez-Revelles, S., Palacios, R., Martín, A., Cachofeiro, V., Aguado, A., García-Redondo, L., Barrús, M.T., de Batista, P.R., Briones, A.M., Salaices, M., Alonso, M.J. (2015). Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. British Journal of Pharmacology 172, 3159-3176
Hickey, M.J., Kubes, P. (1999). Nitric Oxide and Leukocyte Adhesion: Experience with NO Inhibitors, NO Donors and iNOS-Deficient Mice. Shock, Sepsis, and Organ Failure 163-186
Hollands, W.J., Hart, D.J., Dainty, J.R., Hasselwander, O., Tiihonen, K., Wood, R., Kroon, P.A. (2013). Bioavailability of epicatechin and effects on nitric oxide metabolites of an apple flavanol-rich extract supplemented beverage compared to a whole apple puree: a randomized, placebo-controlled, crossover trial. Molecular Nutrition & Food Research 57, 1209-1217
Hölscher, C., Rose, S.P. (1992). An inhibitor of nitric oxide synthesis prevents memory formation in the chick. Neuroscience Letters 145, 165-167
Hussain, M.B., Hobbs, A.J., MacAllister, R.J. (1999). Autoregulation of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. British Journal of Pharmacology 128, 1082-1088
Ignarro, L.J., Buga, G,M., Wood, K.S., Byrns, R.E., Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 84, 9265-9269
IJzerman, R.G., de Jongh, R.T., Beijk, M.A., van Weissenbruch, M.M., Delemarre-van de Waal, H.A., Serné, E.H., Stehouwer, C.D. (2003). Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. European Journal of Clinical Investigation 33, 536-542
Iwakura, A., Luedemann, C., Shastry, S., Hanley, A., Kearney, M., Aikawa, R., Isner, J.M., Asahara, T., Losordo, D.W. (2003). Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108, 3115–3121
Izumi, Y., Zorumski, C.F. (1993). Nitric oxide and long-term synaptic depression in the rat hippocampus. Neuroreport 4, 1131-1134
Jon, O.L., Eddie, W., Mark, T.G. (2008). The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery 7, 156-167
Jungersten, L., Ambring, A., Wall, B., Wennmalm, A. (1997). Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. Journal of Applied Physiology 82, 760-764
Katz, S.D., Khan, T., Zeballos, G.A., Mathew, L., Potharlanka, P., Knecht, M., Whelan, J. (1999). Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation 99, 2113-2117
Khan, B.V., Harrison, D.G., Olbrych, M.T., Alexander, R.W., Medford, R.M. (1996). Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 93, 9114-9119
Kim-Shapiro, D.B., Gladwin, M.T. (2015). Pitfalls in measuring NO bioavailability using NOx. Nitric Oxide 44, 1-2
Kizhakekuttu, T.J., Widlansky, M.E. (2010). Natural antioxidants and hypertension: promise and challenges. Cardiovascular Therapeutics 28, e20-e32
Knight-Lozano, C.A., Young, C.G., Burow, D.L., Hu, Z.Y., Uyeminami, D., Pinkerton, K.E., Ischiropoulos, H., Ballinger, S.W. (2002). Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues.. Circulation 105, 849-854
Kojda, G., Harrison, D. (1999). Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovascular Research 43, 562-571.
Kokkinos, P., Myers, J. (2010). Exercise and physical activity: clinical outcomes and applications. Circulation 122, 1637-1648
Kolka, C.M., Bergman, R.N. (2012). The barrier within: endothelial transport of hormones. Physiology 27, 237-247.
Kratzer, A., Giral, H., Landmesser, U. (2014). High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovascular Research 103, 350-361
Kröncke, K.D., Kolb-Bachofen, V., Berschick, B., Burkart, V., Kolb, H. (1991). Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochemical and Biophysical Research Communications 175, 752-758
Kunsch, C., Medford, R.M. (1999). Oxidative stress as a regulator of gene expression in the vasculature. Circulation Research 85, 753-766
Lam, C.S., Brutsaert, D.L. (2012). Endothelial dysfunction: a pathophysiologic factor in heart failure with preserved ejection fraction. Journal of the American College of Cardiology 60, 1787-1789
Lange, M., Enkhbaatar, P., Nakano, Y., Traber, D.L. (2009). Role of nitric oxide in shock: the large animal perspective. Frontiers in Bioscience (Landmark Edition) 14, 1979-1989
Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jürgens, K., Miche, E., Böhm, M., Nickenig, G. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109, 220-226
Laurent, C., Chabi, B., Fouret, G., Py, G., Sairafi, B., Elong, C., Gaillet, S., Cristol, J.P., Feillet-Coudray, C. (2012). Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats. Free Radical Research 46, 1140-1149
Ledoux, J., Werner, M.E., Brayden, J.E., Nelson, M.T. (2006). Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda, Md.) 21, 69-78
Lee, M.R., Li, L., Kitazawa, T. (1997). Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. The Journal of Biological Chemistry 272, 5063-5068
Levy, A.S., Chung, J.C., Kroetsch, J.T., Rush, J.W. (2009). Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vascular Health and Risk Management. 5, 1075-1087
Libby, P., Ridker, P.M., Hansson, G.K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317-325
Libby, P., Ridker, P.M., Maseri, A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135-1143
Limaye, V., Vadas, M. (2007). The vascular endothelium: structure and function. Mechanisms of Vascular Disease: A Textbook for Vascular Surgeons Cambridge University Press 1-10
Liu, X.B., Hill, P., Haile, D.J. (2002). Role of the ferroportin iron-responsive element in iron and nitric oxide dependent gene regulation. Blood Cells, Molecules & Diseases 29, 315-326
Loke, W.M., Hodgson, J.M., Proudfoot, J.M., McKinley, A.J., Puddey, I.B., Croft, K.D. (2008). Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. The American Journal of Clinical Nutrition 88, 1018-1025
Lucas, D.L., Brown, R.A., Wassef, M., Giles, T.D. (2005). Alcohol and the cardiovascular system: research challenges and opportunities. Journal of the American College of Cardiology 45, 1916-1924
Luk, T.H., Dai, Y.L., Siu, C.W., Yiu, K.H., Li, S.W., Fong, B., Wong, W.K., Tam, S., Tse, H.F. (2012). Association of lower habitual physical activity level with mitochondrial and endothelial dysfunction in patients with stable coronary artery disease. Circulation Journal : Official Journal of The Japanese Circulation Society 76, 2572-2578
Lundberg, J.O., Gladwin, M.T., Ahluwalia, A., Benjamin, N., Bryan, N.S., Butler, A., Cabrales, P., Fago, A., Feelisch, M., Ford, P.C., Freeman, B.A., Frenneaux, M., Friedman, J., Kelm, M., Kevil, C.G., Kim-Shapiro, D.B., Kozlov, A.V., Lancaster, J.R.Jr., Lefer, D.J., McColl, K., McCurry, K., Patel, R.P., Petersson, J., Rassaf, T., Reutov, V.P., Richter-Addo, G.B., Schechter, A., Shiva, S., Tsuchiya, K., van Faassen, E.E., Webb, A.J., Zuckerbraun, B.S., Zweier, J.L., Weitzberg, E. (2009). Nature Chemical Biology 5, 865-869
Lundberg, J.O., Govoni, M. (2004). Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radical Biology & Medicine 37, 395-400
Lundberg, J.O., Weitzberg, E., Gladwin, M.T. (2008). The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews. Drug Discovery 7, 156-167
Lundberg, J.O., Gladwin, M.T., Weitzberg, E. (2015). Strategies to increase nitric oxide signalling in cardiovascular disease. Nature Reviews. Drug Discovery 4, 623-641
Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-241.
MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trumbauer, M., Stevens, K., Xie, Q.W., Sokol, K., Hutchinson, N. (1995). Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641-650
Maines, M.D. (1997). The heme oxygenase system: a regulator of second messenger gases. Annual Review of Pharmacology and Toxicology 37, 517-554
Malyszko, J., Malyszko, J.S., Brzosko, S., Wolczynski, S., Mysliwiec, M. (2004). Adiponectin is related to CD146, a novel marker of endothelial cell activation/injury in chronic renal failure and peritoneally dialyzed patients. The Journal of Clinical Endocrinology and Metabolism 89, 4620-4627
Malyszko, J., Malyszko, J.S., Kozminski, P., Pawlak, K., Mysliwiec, M. (2008). Adipokines, linking adipocytes and vascular function in hemodialyzed patients, may also be possibly related to CD146, a novel adhesion molecule. Clinical and Applied Thrombosis/Hemostasis : Official Journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis 14, 338-345
Mancuso, P., Antoniotti, P., Quarna, J., Calleri, A., Rabascio, C., Tacchetti, C., Braidotti, P., Wu, H.K., Zurita, A.J., Saronni, L., Cheng, J.B., Shalinsky, D.R., Heymach, J.V., Bertolini, F. (2009). Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research 15, 267-273
Martínez-Ruiz, A., Cadenas, S., Lamas, S. (2011). Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radical Biology & Medicine 51, 17-29
Mas, M. (2009). A close look at the endothelium: Its role in the regulation of vasomotor tone. European Urology Supplements 8, 48-57
Mastroiacovo, D., Kwik-Uribe, C., Grassi, D., Necozione, S., Raffaele, A., Pistacchio, L., Righetti, R., Bocale, R., Lechiara, C.M., Marini, C., Ferri, C., Desideri, G. (2015). Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) Study—a randomized controlled trial. The American Journal of Clinical Nutrition 101, 538-548
Matsuo, S., Nakamura, Y., Takahashi, M., Ouchi, Y., Hosoda, K., Nozawa, M., Kinoshita, M. (2001). Effect of red wine and ethanol on production of nitric oxide in healthy subjects. The American Journal of Cardiology 87, 1029-1031
McCabe, T.J., Fulton, D., Roman, L.J., Sessa, W.C. (2000). Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. The Journal of Biological Chemistry 275, 6123-6128
McDonald, K., Cooper, S., Leask, R. (2014). The role of the glycocalyx in leukocyte adhesion to the endothelium. Atherosclerosis 235, e120-e121
Michaelis, U.R. (2014). Mechanisms of endothelial cell migration. Cellular and Molecular Life Sciences : CMLS 71, 4131-4148
Migliori, M., Cantaluppi, V., Mannari, C., Bertelli, A.A., Medica, D., Quercia, A.D., Navarro, V., Scatena, A., Giovannini, L., Biancone, L., Panichi, V. (2015). Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS One 10. doi: 10.1371/journal.pone.0117530.
Milburn, J.A., Cassar, K., Ford, I., Fluck, N., Brittenden, J. (2011). Prothrombotic changes in platelet, endothelial and coagulation function following hemodialysis. The International Journal of Artificial Organs 34, 280-287
Mineo, C., Deguchi, H., Griffin, J.H., Shaul, P.W. (2006). Endothelial and antithrombotic actions of HDL. Circulation Research 98, 1352-1364
Mineo, C., Shaul, P.W. (2012). Novel biological functions of high-density lipoprotein cholesterol. Circulation Research 111, 1079-1090
Mizuno, Y., Isotani, E., Huang, J., Ding, H., Stull, J.T., Kamm, K.E. (2008). Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. American Journal of Physiology. Cell Physiology 295, C358-C364
Moncada, S., Higgs, A. (1993). The L-arginine-nitric oxide pathway. The New England Journal of Medicine 329, 2002-2012
Moro, M.A., Russel, R.J., Cellek, S., Lizasoain, I., Su, Y., Darley-Usmar, V.M., Radomski, M.W., Moncada, S. (1996). cGMP mediating the vascular and platelet actions of nitric oxide:confirmation using a inhibitor of the soluble guanylyl cyclase. Proceedings of the National Academy of Sciences of the United States of America 93, 1480-1485
Münzel, T., Daiber, A., Ullrich, V., Mülsch, A. (2005). Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arteriosclerosis, Thrombosis, and Vascular Biology 25, 1551-1557
Nakane, M., Schmidt, H.H., Pollock, J.S., Förstermann, U., Murad, F. (1993). Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. Federation of European Biochemical Societies Letters 316, 175-180.
Nathan, C. (1997). Inducible nitric oxide synthase: what difference does it make? The Journal of Clinical Investigation 100, 2417-2423
Nathan, C.F., Hibbs, J.B. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology 3, 65–70
Novella, S., Dantas, A.P., Segarra, G., Medina, P., Hermenegildo, C. (2012). Vascular aging in women: is estrogen the fountain of youth? Frontiers in Physiology [electronic resource] doi:10.3389/fphys.2012.00165
Oberle, S., Schwartz, P., Abate, A., Schröder, H. (1999). The antioxidant defense protein ferritin is a novel and specific target for pentaerithrityl tetranitrate in endothelial cells. Biochemical and Biophysical Research Communications 261, 28-34
Ochiai, R., Jokura, H., Suzuki, A., Tokimitsu, I., Ohishi, M., Komai, N., Rakugi, H., Ogihara, T. (2004). Green coffee bean extract improves human vasoreactivity. Hypertension Research : Official Journal of the Japanese Society of Hypertension 27, 731-737
O''Dell, T.J., Hawkins, R.D., Kandel, E.R., Arancio, O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proceedings of the National Academy of Sciences of the United States of America 88, 11285-11289
O''Donnell, V.B., Freeman, B.A. (2001). Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circulation Research 88, 12-21
Ong, P., Athanasiadis, A., Borgulya, G., Vokshi, I., Bastiaenen, R., Kubik, S., Hill, S., Schäufele, T., Mahrholdt, H., Kaski, J.C., Sechtem, U. (2014). Clinical usefulness, angiographic characteristics, and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive white patients with unobstructed coronary arteries. Circulation 129, 1723-1730
Panichi, V., Migliori, M., De Pietro, S., Taccola, D., Bianchi, A.M., Norpoth, M., Metelli, M.R., Giovannini, L., Tetta, C., Palla, R. (2001). C reactive protein in patients with chronic renal diseases. Renal Failure 23, 551-562
Pantopoulos, K., Hentze, M.W. (1995). Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 92, 1267-1271
Parodi, O., De Maria, R., Roubina, E. (2007). Redox state, oxidative stress and endothelial dysfunction in heart failure: the puzzle of nitrate-thiol interaction. Journal of Cardiovascular Medicine 8, 765-774
Potenza, M.A., Gagliardi, S., Nacci, C., Carratu'', M.R., Montagnani, M. (2009). Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Current Medicinal Chemistry 16, 94-112
Pozdnyakov, N., Lloyd, A., Reddy, V.N., Sitaramayya, A. (1993). Nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochemical and Biophysical Research Communications 192, 610-615
Quyyumi, A.A., Patel, R.S. (2010). Endothelial dysfunction and hypertension: cause or effect? Hypertension 55, 1092-1094
Radomski, M.W., Moncada, S. (1993). Regulation of vascular homeostasis by nitric oxide. Thrombosis and Haemostasis 70, 36-41
Rapoport, R.M., Draznin, M.B., Murad, F. (1983). Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306, 174-176
Recalcati, S., Taramelli, D., Conte, D., Cairo, G. (1998). Nitric oxide-mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines: role of selective iron regulatory protein-2 downregulation. Blood 91, 1059-1066
Ritze, Y., Bárdos, G., D’Haese, J.G., Ernst, B., Thurnheer, M., Schultes, B., Bischoff, S.C. (2014). Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PloS One [electronic resource] 9, e101702.
Riwanto, M., Rohrer, L., Roschitzki, B., Besler, C., Mocharla, P., Mueller, M., Perisa, D., Heinrich, K., Altwegg, L., von Eckardstein, A., Lüscher, T.F., Landmesser, U. (2013). Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 127, 891-904
Rocha, B.S., Gago, B., Pereira, C., Barbosa, R.M., Bartesaghi, S., Lundberg, J.O., Radi, R., Laranjinha, J. (2011). Dietary nitrite in nitric oxide biology: a redox interplay with implications for pathophysiology and therapeutics. Current Drug Targets 12, 1351-1363
Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., Hailpern, S.M., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O''Donnell, C., Roger, V., Sorlie, P., Steinberger, J., Thom, T., Wilson, M., Hong, Y.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. (2008). Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25-e146
Ross, R. (1999). Atherosclerosis--an inflammatory disease. The New England Journal of Medicine 340, 115-126
Rossi, R., Nuzzo, A., Origliani, G., Modena, M.G. (2008). Prognostic role of flow-mediated dilation and cardiac risk factors in post-menopausal women. Journal of the American College of Cardiology 51, 997-1002
Sakakura, K., Nakano, M., Otsuka, F., Ladich, E., Kolodgie, F.D., Virmani, R. (2013). Pathophysiology of atherosclerosis plaque progression. Heart, Lung and Circulation 6, 399-411
Sakuma, I., Togashi, H., Yoshioka, M., Saito, H., Yanagida, M., Tamura, M., Kobayashi, T., Yasuda, H., Gross, S.S., Levi, R. (1992). NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circulation Research 70, 607-611
Scalbert, A., Johnson, I.T., Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition 81, 215-217
Schewe, T., Steffen, Y., Sies, H. (2008). How do dietary flavanols improve vascular function? A position paper. Archives of Biochemistry and Biophysics 476, 102-106
Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C.L., Hollenberg, N.K., Sies, H., Kwik-Uribe, C., Schmitz, H.H., Kelm, M. (2006). (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proceedings of the National Academy of Sciences of the United States of America 103, 1024-1029
Schulman, S.P., Becker, L.C., Kass, D.A., Champion, H.C., Terrin, M.L., Forman, S., Ernst, K.V., Kelemen, M.D., Townsend, S.N., Capriotti, A., Hare, J.M., Gerstenblith, G. (2006). L-arginine therapy in acute myocardial infarction: the vascular interaction with age in myocardial infarction (VINTAGE MI) randomized clinical trial. Journal of the American Medical Association 295, 58-64
Schuman, E.M., Madison, D.V. (1991). A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254, 1503-1506
Schwartz, S.M. (1997). Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis. The Journal of Clinical Investigation 99, 2814-2816
Schwedhelm, E., Maas, R., Freese, R., Jung, D., Lukacs, Z., Jambrecina, A., Spickler, W., Schulze, F., Böger, R.H. (2008). Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. British Journal of Clinical Pharmacology, 65, 51-59
Shaik, S., Wang, Z., Inuzuka, H., Liu, P., Wei, W. (2013). Endothelium aging and vascular diseases. Senescence and Senescence-Related Disorders 1, 3-21
Shane, R., Thomas, K.C., John, F., Keaney, Jr. (2002). Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. The Journal of Biological Chemistry 277, 6017-6024
Shaw, L.J., Bairey Merz, C.N., Pepine, C.J., Reis, S.E., Bittner, V., Kelsey, S.F., Olson, M., Johnson, B.D., Mankad, S., Sharaf, B.L., Rogers, W.J., Wessel, T.R., Arant, C.B., Pohost, G.M., Lerman, A., Quyyumi, A.A., Sopko, G.; WISE Investigators. (2006). Insights from the NHLBI-sponsored women''s ischemia syndrome evaluation (WISE) study: Part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. Journal of the American College of Cardiology 47, S4-S20
Si, H., Wyeth, R.P., Liu, D. (2014). The flavonoid luteolin induces nitric oxide production and arterial relaxation. European Journal of Nutrition 53, 269-275
Skrypnik, D., Bogdański, P., Madry, E., Pupek-Musialik, D., Walkowiak, J. (2014). Effect of physical exercise on endothelial function, indicators of inflammation and oxidative stress. Polski Merkuriusz Lekarski : Organ Polskiego Towarzystwa Lekarskiego 36, 117-121
Smith, C.J., Sun, D., Hoegler, C., Roth, B.S., Zhang, X., Zhao, G., Xu, X.B., Kobari, Y., Pritchard, K.Jr., Sessa, W.C., Hintze, T.H. (1996). Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circulation Research 78, 58-64
Smith, S.D., Wheeler, M.A., Weiss, R.M. (1994). Nitric oxide synthase: an endogenous source of elevated nitrite in infected urine. Kidney International 45, 586-591
Solomonson, L.P., Flam, B.R., Pendleton, L.C., Goodwin, B.L., Eichler, D.C. (2003). The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. The Journal of Experimental Biology 206, 2083-2087
Spiegelhalder, B., Eisenbrand, G., Preussmann, R. (1976). Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food and Cosmetics Toxicology 14, 545-548
Stenvinkel, P., Heimbürger, O., Paultre, F., Diczfalusy, U., Wang, T., Berglund, L., Jogestrand, T. (1999). Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney international 55, 1899-1911
Stojanov, M., Stefanovic, A., Dzingalasevic, G., Ivanisevic, J., Miljkovic, M., Mandic-Radic, S., Prostran, M. (2013). Total bilirubin in young men and women: association with risk markers for cardiovascular diseases. Clinical Biochemistry 46, 1516-1519
Sydow, K., Münzel, T. (2003). ADMA and oxidative stress. Atherosclerosis. Supplements 4, 41-51
Tabas, I., Williams, K.J., Borén, J. (2007). Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832-1844.
Tabit, C.E., Chung, W.B., Hamburg, N.M., Vita, J.A. (2010). Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Reviews in Endocrine & Metabolic Disorders 11, 61-74
Tang, E.H., Vanhoutte, P.M. (2010). Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflügers Archiv : European Journal of Physiology 459, 995-1004
Taubert, D., Roesen, R., Lehmann, C., Jung, N., Schömig, E. (2007). Effects of low habitual cocoa intake on blood pressure and bioactive nitric oxide: a randomized controlled trial. Journal of the American Medical Association 298, 49-60
Te Morenga, L.A., Howatson, A.J., Jones, R.M., Mann, J. (2014). Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. The American Journal of Clinical Nutrition 100, 65-79
Terasaka, N., Westerterp, M., Koetsveld, J., Fernández-Hernando, C., Yvan-Charvet, L., Wang, N., Sessa, W.C., Tall, A.R. (2010). ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arteriosclerosis, Thrombosis, and Vascular Biology 30, 2219-2225.
Terasaka, N., Yu, S., Yvan-Charvet, L., Wang, N., Mzhavia, N., Langlois, R., Pagler, T., Li, R., Welch, C.L., Goldberg, I.J., Tall, A.R. (2008). ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. The Journal of Clinical Investigation 118, 3701-3713
Tian, S., Ge, X., Wu, K., Yang, H., Liu, Y. (2014). Ramipril protects the endothelium from high glucose-induced dysfunction through CaMKKβ/AMPK and heme oxygenase-1 activation. The Journal of Pharmacology and Experimental Therapeutics 350, 5-13
Toda, N., Ayajiki, K., Okamura, T. (2009). Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. Journal of Hypertension 27, 1929-1940
Togashi, H., Sakuma, I., Yoshioka, M., Kobayashi, T., Yasuda, H., Kitabatake, A., Saito, H., Gross, S.S., Levi, R. (1992). A central nervous system action of nitric oxide in blood pressure regulation. The Journal of Pharmacology and Experimental Therapeutics 262, 343-347
Tonelli, M., Wanner, C. (2014). Lipid management in chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2013 clinical practice guideline. Annals of Internal Medicine 160, 182
Tousoulis, D., Charakida, M., Stefanadis, C. (2005). Inflammation and endothelial dysfunction as therapeutic targets in patients with heart failure. International Journal of Cardiology 100, 347-353
Trepakova, E.S., Cohen, R.A., Bolotina, V.M. (1999). Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores. Circulation Research 84, 201-209
Vallance, P., John, L. (2016). Blood vessels and the endothelium. Oxford Textbook of Medicine (5 ed.) doi:10.1093/med/9780199204854.003.160101_update_001
van Faassen, E.E., Bahrami, S., Feelisch, M., Hogg, N., Kelm, M., Kim-Shapiro, D.B., Kozlov, A.V., Li, H., Lundberg, J.O., Mason, R., Nohl, H., Rassaf, T., Samouilov, A., Slama-Schwok, A., Shiva, S., Vanin, A.F., Weitzberg, E., Zweier, J., Gladwin, M.T. (2009). Medicinal Research Reviews 29, 683-741
van Sloten, T.T., Henry, R.M., Dekker, J.M., Nijpels, G., Unger, T., Schram, M.T., Stehouwer, C.D. (2014). Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes: the Hoorn study. Hypertension 64, 1299-1305
Vanhoutte, P.M., Shimokawa, H., Tang, E.H., Feletou, M. (2009). Endothelial dysfunction and vascular disease. Acta Physiologica (Oxford, England) 196, 193-222
Versari, D., Daghini, E., Virdis, A., Ghiadoni, L., Taddei, S. (2009). Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32, S314–S321
Villalobo, A. (2006). Nitric oxide and cell proliferation. Federation of European Biochemical Societies journal 273, 2329-2344
Virdis, A., Bacca, A., Colucci, R., Duranti, E., Fornai, M., Materazzi, G., Ippolito, C., Bernardini, N., Blandizzi, C., Bernini, G., Taddei, S. (2013). Endothelial dysfunction in small arteries of essential hypertensive patients: role of cyclooxygenase-2 in oxidative stress generation. Hypertension 62, 337-344
Vita, J.A., Hamburg, N.M. (2010). Does endothelial dysfunction contribute to the clinical status of patients with peripheral arterial disease? The Canadian Journal of Cardiology 26, 45A-50A.
Vita, J.A., Treasure, C.B., Nabel, E.G., McLenachan, J.M., Fish, R.D., Yeung, A.C., Vekshtein, V.I., Selwyn, A.P., Ganz, P. (1990). Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81, 491-497
Warnock, D.G., Kusche-Vihrog, K., Tarjus, A., Sheng, S., Oberleithner, H., Kleyman, T,R., Jaisser, F. (2014). Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nature Reviews. Nephrology 10, 146-157
Webb, R.C. (2003). Smooth muscle contraction and relaxation. Advances in Physiology Education 27, 201-206
Weinberg, J.B., Lang, T., Wilkinson, W.E., Pisetsky, D.S., St Clair, E.W. (2006). Serum, urinary, and salivary nitric oxide in rheumatoid arthritis: complexities of interpreting nitric oxide measures. Arthritis Research & Therapy doi: 10.1186/ar2030
Weitzberg, E., Lundberg, J.O. (2013). Novel aspects of dietary nitrate and human health. Annual Review of Nutrition 33, 129-59
Werns, S.W., Walton, J.A., Hsia, H.H., Nabel, E.G., Sanz, M.L., Pitt, B. (1989). Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 79, 287-291
Wilson, A.M., Harada, R., Nair, N., Balasubramanian, N., Cooke, J.P. (2007). L-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation 116, 188-195
Wilson, S.H., Lerman, A. (2001). Function of vascular endothelium. Heart Physiology and Pathophysiology. 473-480
Witman, M.A., Fjeldstad, A.S., McDaniel, J., Ives, S.J., Zhao, J., Barrett-O''Keefe, Z., Nativi, J.N., Stehlik, J., Wray, D.W., Richardson, R.S. (2012). Vascular function and the role of oxidative stress in heart failure, heart transplant, and beyond. Hypertension 60, 659-668
Xu, J., Zou, M.H. (2009). Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 120, 1266-1286.
Yang, Z., Ming, X.F. (2006). Recent advances in understanding endothelial dysfunction in atherosclerosis. Clinical Medicine & Research 4, 53-65
Yao, L., Chandra, S., Toque, H.A., Bhatta, A., Rojas, M., Caldwell, R.B., Caldwell, R.W. (2013). Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovascular Research 97, 509-519
Yau, J.W., Teoh, H., Verma, S. (2015). Endothelial cell control of thrombosis. BioMed Central Cardiovascular Disorders 15, 130
Yilmaz, M.I., Saglam, M., Caglar, K., Cakir, E., Sonmez, A., Ozgurtas, T., Aydin, A., Eyileten, T., Ozcan, O., Acikel, C., Tasar, M., Genctoy, G., Erbil, K., Vural, A., Zoccali, C. (2006). The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. American Journal of Kidney Diseases : the Official Journal of the National Kidney Foundation 47, 42-50
Young, E.E., Sieve, A.N., Vichaya, E.G., Carcoba, L.M., Young, C.R., Ambrus, A., Storts, R., Welsh, C.J.R., Meagher, M.W. (2010). Chronic restraint stress during early Theiler’s virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. Journal of Neuroimmunology 220, 79-89.
Zeng, C., Villar, V.A., Yu, P., Zhou, L., Jose, P.A. (2009). Reactive oxygen species and dopamine receptor function in essential hypertension. Clinical and Experimental Hypertension 31, 156-178.
Zhang, W., Wang, Q., Wu, Y., Moriasi, C., Liu, Z., Dai, X., Wang, Q., Liu, W., Yuan, Z.Y., Zou, M.H. (2014). Endothelial cell-specific liver kinase B1 deletion causes endothelial dysfunction and hypertension in mice in vivo. Circulation 129, 1428-1439
Zhou, L., Zhu, D.Y. (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide:Biology and Chemistry 20, 223-230
Ziberna, L., Martelanc, M., Franko, M., Passamonti, S. (2016). Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Scientific Reports doi: 10.1038/srep29240
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔