跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖名喨
研究生(外文):Ming-Liang Liao
論文名稱:水溶性鑭系元素摻雜的能量上轉換奈米粒子: 合成、分析與作為近紅外光驅動光動力療法之光敏劑探討
論文名稱(外文):Synthesis and characterization of water-soluble lanthanide-doped upconversion nanoparticles as the photosentizing drug toward NIR-promoted photodynamic therapy
指導教授:朱智謙朱智謙引用關係
指導教授(外文):Chih-Chien Chu
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:121
中文關鍵詞:上轉換奈米粒子能量上轉換樹枝狀高分子光動力療法逐層吸附法
外文關鍵詞:UCNPEnergy upconversionPAMAM dendrimerPhotodynamic therapyLayer-by-Layer assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們開發出一個可以吸收近紅外光而驅動光動力療法之複合材料,而在材料的合成上採用layer-by-layer (LBL)的策略,將不同化合物修飾在奈米粒子。首先我們利用具有能量上轉換之摻雜鑭系元素奈米粒子(upconversion nanoparticles; UCNP)作為複合材料的主體,接著使用檸檬酸鈉進行Ligand Exchange,將UCNP表面上的油酸分子置換成檸檬酸根,藉此將UCNP修飾為水溶性並且表面帶負電。接著利用靜電吸附力將表面帶有64個NH2的第四代G4 PAMAM 樹枝狀高分子固定在UCNP表面上。帶有負電荷的三重態光敏感劑Ce6,再藉由靜電作用力吸附在奈米粒子的最外圍,而得到具備光動力療法的複合材料。相較於一般化學修飾法,透過LBL靜電吸附法便能夠快速而方便地將材料製備出來。接著使用980nm近紅外雷射光照射UCNP複合材料,當產生能量上轉換而釋放出三種不同波長的螢光-紫外光(365nm)、藍光(460nm)、紅光(660nm)。這三種光就會激發吸附在材料表面的Ce6,當能量轉移給周邊的三重態氧分子產生單重態活性氧分子,進而達到光動力療法的目的。在細胞實驗中,發現複合材料沒有毒性而且當複合材料吸附在低濃度Ce6(0.25μM)並藉由紅光驅動光動力療法,其細胞毒殺效果可達62.4%而單一藥物-Ce6僅12%,所以透過複合材料能夠有效增強光動力療法療效。此外,當利用近紅外光雷射驅動光動力療法其細胞毒殺效果將近70%。在未來希望能夠將此複合材料進行動物實驗來測試實際抑制癌細胞的效果。
In the study, we successfully synthesized a hybrid material that can carry functional molecules through a layer-by-layer (LBL) absorption strategy to perform near-infrared light (NIR)-promoted photodynamic therapy (PDT). First, the NIR-triggered PDT system was based on the lanthanide-doped energy upconversion nanoparticles (UCNP); then, the hydrophobic UCNPs were turned into the carboxylate-functionalized UCNP by exchanging the oleic acid with citrate ligands. We then loaded the G4 PAMAM dendrimers onto UCNP surface by simple electrostatic interactions between those NH2 groups of dendrimers and the COOH groups of citrate ligands. Afterward, a photosensitizer of Chlorin e6 (Ce6) bearing negatively charged COOH groups was allowed to absorb onto the dendrimer-coated UCNP by electrostatic binding. The LBL strategy provides a convenient route to prepare the stable nanocomplexes. The lanthanide-doped UCNP can emit upconverted UV, blue and red light under NIR-light excitation, and the visible light will excite the Ce6 on the UCNPs surface, followed by the energy transfer between the triplet Ce6 and surrounding oxygen to produce toxic singlet-oxygen (1O2), thus achieving the NIR-triggered PDT. In vitro experiments show that the NIR promoted-PDT material is nontoxic in dark but kill approximate 62% of MCF-7 cells under 660-nm (red) laser excitation at low Ce6 concentrations (0.25μM). In sharp contrast, the pristine Ce6 only kills approximately 12% of cells under the same red-light exposure. Most importantly, approximate 70% of cells is killed under the same concentration upon 980-nm (NIR) laser excitation, suggesting that the NIR-triggered is more effective than conventional red-light triggered PDT using the hybrid UCNPs as the photosensitizers. We anticipate the hybrid materials will be promising toward in vivo PDT for cancer treatment.
目錄
1-1 研究背景 1
1-2 研究動機及方法 3
第二章 文獻回顧 6
2-1 Upconversion Nanoparticles (簡稱UCNP)介紹 6
2-1-2上轉換機制 11
2-1-3水溶性UCNP之表面修飾方式 12
2-2 光動力療法(Photodynamic therapy簡稱PDT) 18
2-2-1光動力療法發展 18
2-2-2光動力療法機制 19
2-3樹枝狀高分子PAMAM dendrimer 21
2-3-1樹枝狀高分子合成 22
2-3-2樹枝狀高分子特性 23
2-4材料設計概念 24
第三章 實驗方法 27
3-1 實驗藥品 27
3-2 分析儀器 29
3-3 NaYF4:0.5%Tm/20%Yb (core) 奈米粒子之合成 31
3-4 NaYF4:Tm,Yb@ NaYF4 (core / shell)奈米粒子之合成 33
3-5 複合材料Ce6-G4-UCNP 製備 35
3-5-1水溶性COOH-UCNP製備 - Lemieux-von Rudloff 氧化法 35
3-5-2水溶性COOH-UCNP製備 –臭氧氧化法 36
3-5-3 水溶性 citrate-UCNP 製備 – Ligand Exchange 38
3-5-4 Layer by Layer – G4-Citrate-UCNP合成 39
3-5-5 Layer by Layer – Ce6-G4-Citrate-UCNP合成 40
3-6海螢螢光素分子單態氧偵測實驗 41
3-6-1單一藥物Ce6 -照射紫外光、藍光、紅光之單態氧偵測實驗 41
3-6-2單一藥物Ce6-增加溶劑含氧量並照光之單態氧偵測實驗 41
3-6-3單一藥物Ce6 -照射複合光源-白燈之單態氧偵測實驗 41
3-6-4複合材料照射紅光與近紅外光之單態氧偵測實驗 41
3-7 細胞光動力療法測試與細胞存活率測試 42
第四章 結果與討論 43
4-1 NaYF4:Tm,Yb@ NaYF4(core/shell)奈米粒子合成與鑑定 43
4-2複合材料Ce6-G4-UCNP合成與鑑定 58
4-2-1水溶性COOH-UCNP製備 –Lemieux-von Rudloff氧化法 58
4-2-2水溶性COOH-UCNP製備 - 臭氧氧化法 61
4-2-3 ligand exchange –citrate-UCNP合成與鑑定 65
4-2-4 Layer-by-Layer G4-citrate-UCNP 合成與鑑定 77
4-2-5 Layer-by-Layer Ce6-G4-Citrate-UCNP 合成與鑑定 87
4-3海螢螢光素分子單態氧偵測實驗 94
4-3-1單一藥物Ce6 -照射紫外光、藍光、紅光之單態氧偵測實驗 97
4-3-2單一藥物Ce6-增加溶劑含氧量並照光之單態氧偵測實驗 100
4-3-3單一藥物Ce6 -照射複合光源-白燈之單態氧偵測實驗 102
4-3-4單一藥物Ce6- 照射紅光與近紅外光之單態氧偵測實驗 104
4-3-5複合材料照射紅光與近紅外光之單態氧偵測實驗 106
4-4 細胞光動力療法測試 109
4-4-1 單一藥物Ce6之光動力療法測試 109
4-4-2 複合材料之光動力療法測試 112
第五章 結論 115
第六章 參考文獻 116
第七章 附錄 121
1.Dougherty, T. J., An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery 2002, 20 (1), 3-7.
2.Stummer, W.; Hassan, A.; Kempski, O.; Goetz, C., Photodynamic therapy within edematous brain tissue: Considerations on sensitizer dose and time point of laser irradiation. J. Photochem. Photobiol. B: Biol. 1996, 36 (2), 179-181.
3.Figueroa, E. R.; Lin, A. Y.; Yan, J.; Luo, L.; Foster, A. E.; Drezek, R. A., Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 2014, 35 (5), 1725-1734.
4.Liu, H.; Shen, M.; Zhao, J.; Zhu, J.; Xiao, T.; Cao, X.; Zhang, G.; Shi, X., Facile formation of folic acid-modified dendrimer-stabilized gold-silver alloy nanoparticles for potential cellular computed tomography imaging applications. Analyst 2013, 138 (7), 1979-1987.
5.He, X.; Wu, X.; Cai, X.; Lin, S.; Xie, M.; Zhu, X.; Yan, D., Functionalization of Magnetic Nanoparticles with Dendritic–Linear–Brush-Like Triblock Copolymers and Their Drug Release Properties. Langmuir 2012, 28 (32), 11929-11938.
6.Guo, H.; Qian, H.; Idris, N. M.; Zhang, Y., Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomed. Nanotechnol. Biol. Med. 2010, 6 (3), 486-495.
7.(a) Bae, K. H.; Chung, H. J.; Park, T. G., Nanomaterials for cancer therapy and imaging. Molecules and Cells 2011, 31 (4), 295-302; (b) Chang, Y.; Meng, X.; Zhao, Y.; Li, K.; Zhao, B.; Zhu, M.; Li, Y.; Chen, X.; Wang, J., Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci. 2011, 363 (1), 403-409.
8.Tseng, Y.-T.; Chang, H.-Y.; Huang, C.-C., A mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem. Commun. 2012, 48 (69), 8712-8714.
9.Chanana, M.; Rivera_Gil, P.; Correa-Duarte, M. A.; Liz-Marzán, L. M.; Parak, W. J., Physicochemical Properties of Protein-Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. Angew. Chem. Int. Ed. 2013, 52 (15), 4179-4183.
10.Yang, X.; Xiao, Q.; Niu, C.; Jin, N.; Ouyang, J.; Xiao, X.; He, D., Multifunctional core-shell upconversion nanoparticles for targeted tumor cells induced by near-infrared light. Journal of Materials Chemistry B 2013, 1 (21), 2757-2763.
11.Boisselier, E.; Diallo, A. K.; Salmon, L.; Ruiz, J.; Astruc, D., Gold nanoparticles synthesis and stabilization via new "clicked" polyethyleneglycol dendrimers. Chem. Commun. 2008, (39), 4819-4821.
12.Zhang, H.; Li, Y.; Ivanov, I. A.; Qu, Y.; Huang, Y.; Duan, X., Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. Angew. Chem. Int. Ed. 2010, 49 (16), 2865-2868.
13.Zhou, H.-P.; Xu, C.-H.; Sun, W.; Yan, C.-H., Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv. Funct. Mater. 2009, 19 (24), 3892-3900.
14.Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels. J. Am. Chem. Soc. 2008, 130 (10), 3023-3029.
15.Wang, D.; Chen, C.; Ke, X.; Kang, N.; Shen, Y.; Liu, Y.; Zhou, X.; Wang, H.; Chen, C.; Ren, L., Bioinspired Near-Infrared-Excited Sensing Platform for in Vitro Antioxidant Capacity Assay Based on Upconversion Nanoparticles and a Dopamine–Melanin Hybrid System. ACS Applied Materials & Interfaces 2015, 7 (5), 3030-3040.
16.Mohammadifar, E.; Nemati Kharat, A.; Adeli, M., Polyamidoamine and polyglycerol; their linear, dendritic and linear-dendritic architectures as anticancer drug delivery systems. Journal of Materials Chemistry B 2015, 3 (19), 3896-3921.
17.Chen, X.; Zhao, Z.; Jiang, M.; Que, D.; Shi, S.; Zheng, N., Preparation and photodynamic therapy application of NaYF4:Yb, Tm-NaYF4:Yb, Er multifunctional upconverting nanoparticles. New J. Chem. 2013, 37 (6), 1782-1788.
18.Qiu, H.; Yang, C.; Shao, W.; Damasco, J.; Wang, X.; Ågren, H.; Prasad, P.; Chen, G., Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration. Nanomaterials 2014, 4 (1), 55.
19.Auzel, F., Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104 (1), 139-174.
20.Dou, Q.; Idris, N. M.; Zhang, Y., Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 2013, 34 (6), 1722-1731.
21.Wang, F.; Liu, X., Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 2008, 130 (17), 5642-5643.
22.Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R., Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16 (7), 1244-1251.
23.Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114 (10), 5161-5214.
24.Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C.; Liu, Z.; Chan, E. M.; Duan, C.; Han, G., Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy. ACS Nano 2014, 8 (10), 10621-10630.
25.Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z., Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3 (10), 722-732.
26.Wu, X.-J.; Xu, D., Formation of Yolk/SiO2 Shell Structures Using Surfactant Mixtures as Template. J. Am. Chem. Soc. 2009, 131 (8), 2774-2775.
27.Yang, S.; Li, N.; Liu, Z.; Sha, W.; Chen, D.; Xu, Q.; Lu, J., Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale 2014, 6 (24), 14903-14910.
28.Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N., Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. Adv. Funct. Mater. 2009, 19 (6), 853-859.
29.Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Lett. 2011, 11 (2), 835-840.
30.Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17 (1), 117-132.
31.Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112 (21), 7638-7647.
32.(a) Wang, D.; Imae, T., Fluorescence Emission from Dendrimers and Its pH Dependence. J. Am. Chem. Soc. 2004, 126 (41), 13204-13205; (b) Lee, W. I.; Bae, Y.; Bard, A. J., Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126 (27), 8358-8359.
33.Wang, C.; Cheng, L.; Liu, Y.; Wang, X.; Ma, X.; Deng, Z.; Li, Y.; Liu, Z., Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv. Funct. Mater. 2013, 23 (24), 3077-3086.
34.Esipova, T. V.; Ye, X.; Collins, J. E.; Sakadžić, S.; Mandeville, E. T.; Murray, C. B.; Vinogradov, S. A., Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proceedings of the National Academy of Sciences 2012, 109 (51), 20826-20831.
35.Tong, L.; Lu, E.; Pichaandi, J.; Cao, P.; Nitz, M.; Winnik, M. A., Quantification of Surface Ligands on NaYF4 Nanoparticles by Three Independent Analytical Techniques. Chem. Mater. 2015, 27 (13), 4899-4910.
36.Worden, J. G.; Dai, Q.; Huo, Q., A nanoparticle-dendrimer conjugate prepared from a one-step chemical coupling of monofunctional nanoparticles with a dendrimer. Chem. Commun. 2006, (14), 1536-1538.
37.Bogdan, N.; Vetrone, F.; Roy, R.; Capobianco, J. A., Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J. Mater. Chem. 2010, 20 (35), 7543-7550.
38.Josefsen, L. B.; Boyle, R. W., Photodynamic Therapy and the Development of Metal-Based Photosensitisers. Met.-Based Drugs 2008, 2008, 276109.
39.Chu, C.-C.; Imae, T., Fluorescence Investigations of Oxygen-Doped Simple Amine Compared with Fluorescent PAMAM Dendrimer. Macromol. Rapid Commun. 2009, 30 (2), 89-93.
40.Liu, X.; Zheng, M.; Kong, X.; Zhang, Y.; Zeng, Q.; Sun, Z.; Buma, W. J.; Zhang, H., Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem. Commun. 2013, 49 (31), 3224-3226.
41.Alemany-Ribes, M.; García-Díaz, M.; Busom, M.; Nonell, S.; Semino, C. E., Toward a 3D Cellular Model for Studying In Vitro the Outcome of Photodynamic Treatments: Accounting for the Effects of Tissue Complexity. Tissue Engineering Part A 2013, 19 (15-16), 1665-1674.
42.Gong, H.; Dong, Z.; Liu, Y.; Yin, S.; Cheng, L.; Xi, W.; Xiang, J.; Liu, K.; Li, Y.; Liu, Z., Engineering of Multifunctional Nano-Micelles for Combined Photothermal and Photodynamic Therapy Under the Guidance of Multimodal Imaging. Adv. Funct. Mater. 2014, 24 (41), 6492-6502.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊