|
1.Dougherty, T. J., An Update on Photodynamic Therapy Applications. Journal of Clinical Laser Medicine & Surgery 2002, 20 (1), 3-7. 2.Stummer, W.; Hassan, A.; Kempski, O.; Goetz, C., Photodynamic therapy within edematous brain tissue: Considerations on sensitizer dose and time point of laser irradiation. J. Photochem. Photobiol. B: Biol. 1996, 36 (2), 179-181. 3.Figueroa, E. R.; Lin, A. Y.; Yan, J.; Luo, L.; Foster, A. E.; Drezek, R. A., Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 2014, 35 (5), 1725-1734. 4.Liu, H.; Shen, M.; Zhao, J.; Zhu, J.; Xiao, T.; Cao, X.; Zhang, G.; Shi, X., Facile formation of folic acid-modified dendrimer-stabilized gold-silver alloy nanoparticles for potential cellular computed tomography imaging applications. Analyst 2013, 138 (7), 1979-1987. 5.He, X.; Wu, X.; Cai, X.; Lin, S.; Xie, M.; Zhu, X.; Yan, D., Functionalization of Magnetic Nanoparticles with Dendritic–Linear–Brush-Like Triblock Copolymers and Their Drug Release Properties. Langmuir 2012, 28 (32), 11929-11938. 6.Guo, H.; Qian, H.; Idris, N. M.; Zhang, Y., Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomed. Nanotechnol. Biol. Med. 2010, 6 (3), 486-495. 7.(a) Bae, K. H.; Chung, H. J.; Park, T. G., Nanomaterials for cancer therapy and imaging. Molecules and Cells 2011, 31 (4), 295-302; (b) Chang, Y.; Meng, X.; Zhao, Y.; Li, K.; Zhao, B.; Zhu, M.; Li, Y.; Chen, X.; Wang, J., Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin–PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J. Colloid Interface Sci. 2011, 363 (1), 403-409. 8.Tseng, Y.-T.; Chang, H.-Y.; Huang, C.-C., A mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem. Commun. 2012, 48 (69), 8712-8714. 9.Chanana, M.; Rivera_Gil, P.; Correa-Duarte, M. A.; Liz-Marzán, L. M.; Parak, W. J., Physicochemical Properties of Protein-Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. Angew. Chem. Int. Ed. 2013, 52 (15), 4179-4183. 10.Yang, X.; Xiao, Q.; Niu, C.; Jin, N.; Ouyang, J.; Xiao, X.; He, D., Multifunctional core-shell upconversion nanoparticles for targeted tumor cells induced by near-infrared light. Journal of Materials Chemistry B 2013, 1 (21), 2757-2763. 11.Boisselier, E.; Diallo, A. K.; Salmon, L.; Ruiz, J.; Astruc, D., Gold nanoparticles synthesis and stabilization via new "clicked" polyethyleneglycol dendrimers. Chem. Commun. 2008, (39), 4819-4821. 12.Zhang, H.; Li, Y.; Ivanov, I. A.; Qu, Y.; Huang, Y.; Duan, X., Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. Angew. Chem. Int. Ed. 2010, 49 (16), 2865-2868. 13.Zhou, H.-P.; Xu, C.-H.; Sun, W.; Yan, C.-H., Clean and Flexible Modification Strategy for Carboxyl/Aldehyde-Functionalized Upconversion Nanoparticles and Their Optical Applications. Adv. Funct. Mater. 2009, 19 (24), 3892-3900. 14.Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels. J. Am. Chem. Soc. 2008, 130 (10), 3023-3029. 15.Wang, D.; Chen, C.; Ke, X.; Kang, N.; Shen, Y.; Liu, Y.; Zhou, X.; Wang, H.; Chen, C.; Ren, L., Bioinspired Near-Infrared-Excited Sensing Platform for in Vitro Antioxidant Capacity Assay Based on Upconversion Nanoparticles and a Dopamine–Melanin Hybrid System. ACS Applied Materials & Interfaces 2015, 7 (5), 3030-3040. 16.Mohammadifar, E.; Nemati Kharat, A.; Adeli, M., Polyamidoamine and polyglycerol; their linear, dendritic and linear-dendritic architectures as anticancer drug delivery systems. Journal of Materials Chemistry B 2015, 3 (19), 3896-3921. 17.Chen, X.; Zhao, Z.; Jiang, M.; Que, D.; Shi, S.; Zheng, N., Preparation and photodynamic therapy application of NaYF4:Yb, Tm-NaYF4:Yb, Er multifunctional upconverting nanoparticles. New J. Chem. 2013, 37 (6), 1782-1788. 18.Qiu, H.; Yang, C.; Shao, W.; Damasco, J.; Wang, X.; Ågren, H.; Prasad, P.; Chen, G., Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration. Nanomaterials 2014, 4 (1), 55. 19.Auzel, F., Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104 (1), 139-174. 20.Dou, Q.; Idris, N. M.; Zhang, Y., Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 2013, 34 (6), 1722-1731. 21.Wang, F.; Liu, X., Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. Am. Chem. Soc. 2008, 130 (17), 5642-5643. 22.Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R., Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater. 2004, 16 (7), 1244-1251. 23.Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114 (10), 5161-5214. 24.Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C.; Liu, Z.; Chan, E. M.; Duan, C.; Han, G., Amplifying the Red-Emission of Upconverting Nanoparticles for Biocompatible Clinically Used Prodrug-Induced Photodynamic Therapy. ACS Nano 2014, 8 (10), 10621-10630. 25.Cheng, L.; Yang, K.; Zhang, S.; Shao, M.; Lee, S.; Liu, Z., Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 2010, 3 (10), 722-732. 26.Wu, X.-J.; Xu, D., Formation of Yolk/SiO2 Shell Structures Using Surfactant Mixtures as Template. J. Am. Chem. Soc. 2009, 131 (8), 2774-2775. 27.Yang, S.; Li, N.; Liu, Z.; Sha, W.; Chen, D.; Xu, Q.; Lu, J., Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale 2014, 6 (24), 14903-14910. 28.Kumar, R.; Nyk, M.; Ohulchanskyy, T. Y.; Flask, C. A.; Prasad, P. N., Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals. Adv. Funct. Mater. 2009, 19 (6), 853-859. 29.Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles. Nano Lett. 2011, 11 (2), 835-840. 30.Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17 (1), 117-132. 31.Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112 (21), 7638-7647. 32.(a) Wang, D.; Imae, T., Fluorescence Emission from Dendrimers and Its pH Dependence. J. Am. Chem. Soc. 2004, 126 (41), 13204-13205; (b) Lee, W. I.; Bae, Y.; Bard, A. J., Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126 (27), 8358-8359. 33.Wang, C.; Cheng, L.; Liu, Y.; Wang, X.; Ma, X.; Deng, Z.; Li, Y.; Liu, Z., Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv. Funct. Mater. 2013, 23 (24), 3077-3086. 34.Esipova, T. V.; Ye, X.; Collins, J. E.; Sakadžić, S.; Mandeville, E. T.; Murray, C. B.; Vinogradov, S. A., Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proceedings of the National Academy of Sciences 2012, 109 (51), 20826-20831. 35.Tong, L.; Lu, E.; Pichaandi, J.; Cao, P.; Nitz, M.; Winnik, M. A., Quantification of Surface Ligands on NaYF4 Nanoparticles by Three Independent Analytical Techniques. Chem. Mater. 2015, 27 (13), 4899-4910. 36.Worden, J. G.; Dai, Q.; Huo, Q., A nanoparticle-dendrimer conjugate prepared from a one-step chemical coupling of monofunctional nanoparticles with a dendrimer. Chem. Commun. 2006, (14), 1536-1538. 37.Bogdan, N.; Vetrone, F.; Roy, R.; Capobianco, J. A., Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J. Mater. Chem. 2010, 20 (35), 7543-7550. 38.Josefsen, L. B.; Boyle, R. W., Photodynamic Therapy and the Development of Metal-Based Photosensitisers. Met.-Based Drugs 2008, 2008, 276109. 39.Chu, C.-C.; Imae, T., Fluorescence Investigations of Oxygen-Doped Simple Amine Compared with Fluorescent PAMAM Dendrimer. Macromol. Rapid Commun. 2009, 30 (2), 89-93. 40.Liu, X.; Zheng, M.; Kong, X.; Zhang, Y.; Zeng, Q.; Sun, Z.; Buma, W. J.; Zhang, H., Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chem. Commun. 2013, 49 (31), 3224-3226. 41.Alemany-Ribes, M.; García-Díaz, M.; Busom, M.; Nonell, S.; Semino, C. E., Toward a 3D Cellular Model for Studying In Vitro the Outcome of Photodynamic Treatments: Accounting for the Effects of Tissue Complexity. Tissue Engineering Part A 2013, 19 (15-16), 1665-1674. 42.Gong, H.; Dong, Z.; Liu, Y.; Yin, S.; Cheng, L.; Xi, W.; Xiang, J.; Liu, K.; Li, Y.; Liu, Z., Engineering of Multifunctional Nano-Micelles for Combined Photothermal and Photodynamic Therapy Under the Guidance of Multimodal Imaging. Adv. Funct. Mater. 2014, 24 (41), 6492-6502.
|